# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a075133 Showing 1-1 of 1 %I A075133 #9 Apr 23 2016 09:15:51 %S A075133 5,9,15,39,72,128,228,309,417,562,567,657,740,762,779,789,927,959,967, %T A075133 981,1214,1315,1364,1632,1650,1667,1785,1825,2295,2425,2442,2607,2709, %U A075133 2721,2840,3085,3114,3194,3401,3812,3911,4428,4472,4479,4645,4753,4780 %N A075133 Indices of double-safe primes: p=prime(n) is double-safe: q=(p-1)/2 & r=(q-1)/2 are both prime (and q is safe). %C A075133 prime p is safe if q=(p-1)/2 is prime, so p is double safe if also r=(q-1)/2 is prime. Safe primes are in A005385, indices of triple-safe primes are in A075314 %e A075133 72 is a member because p(72)=359, q=(p-1)/2=179 and r=(q-1)2=89 are primes. %t A075133 se2=Select[(Select[(Prime[Range[20000]]-1)/2, PrimeQ]-1)/2, PrimeQ]; Map[PrimePi, Map[2(2*#+1)+1&, se2]] %t A075133 dspQ[n_]:=Module[{q=(n-1)/2},AllTrue[{q,(q-1)/2},PrimeQ]]; Position[ Prime[ Range[5000]],_?(dspQ[#]&)]//Flatten (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Apr 23 2016 *) %Y A075133 Cf. A005385, A075314. %K A075133 nonn %O A075133 1,1 %A A075133 _Zak Seidov_, Sep 04 2002 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE