# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a062590 Showing 1-1 of 1 %I A062590 #16 Jun 01 2023 16:19:41 %S A062590 0,1,1,0,2,0,2,0,0,0,3,0,3,0,0,0,4,0,4,0,0,0,4,0,0,0,0,0,4,0,4,0,0,0, %T A062590 0,0,5,0,0,0,5,0,5,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,5,0,5,0,0,0,0,0,5,0, %U A062590 0,0,5,0,5,0,0,0,0,0,5,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,0,0,6,0,0,0,6,0,6,0,0 %N A062590 Variation on A029834: a discrete version of the Mangoldt function. If n is prime then floor(log(prime(n))) else 0. %H A062590 Antti Karttunen, Table of n, a(n) for n = 1..10000 %F A062590 a(n) = delta(tau(n), 2) * floor(log(prime(n))) = A010051(n) * A029835(n), where delta is the Kronecker delta function and tau is the number of divisors function. - _Alonso del Arte_, Sep 11 2013 %e A062590 a(5) = 2 because the fifth prime is 11, the logarithm of which is 2.397895... %e A062590 a(6) = 0 because 6 is not prime. %e A062590 a(7) = 2 because the seventh prime is 17, the logarithm of which is 2.833213344... %t A062590 Table[Boole[PrimeQ[n]] Floor[Log[Prime[n]]], {n, 105}] (* _Alonso del Arte_, Sep 07 2013 *) %o A062590 (PARI) v=[]; for(n=1,150,v=concat(v, if(isprime(n),floor(log(prime(n))),))); v %Y A062590 Cf. A029834. %K A062590 nonn %O A062590 1,5 %A A062590 _Jason Earls_, Jul 03 2001 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE