# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a060485 Showing 1-1 of 1 %I A060485 #17 Mar 02 2023 13:48:51 %S A060485 43,4520,244035,10418070,401861943,14778678180,530817413155, %T A060485 18837147108890,664260814445943,23345018969140440,818942064306004275, %U A060485 28699514624047140510,1005201938765467579543,35196266296400319440300 %N A060485 Number of 7-block tricoverings of an n-set. %C A060485 A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering. %H A060485 Andrew Howroyd, Table of n, a(n) for n = 4..200 %H A060485 Index entries for linear recurrences with constant coefficients, signature (110, -4991, 124120, -1887459, 18470550, -118758569, 501056740, -1355000500, 2223560000, -1973160000, 705600000). %F A060485 a(n) = (1/7!)*(35^n - 7*20^n - 21*15^n + 42*10^n + 105*8^n + 105*7^n + 70*5^n - 945*4^n - 525*3^n + 2450*2^n - 1470). %F A060485 E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..infinity}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y). %F A060485 G.f.: x^4*(27300000*x^7 +9288000*x^6 -17908650*x^5 +6008735*x^4 -796380*x^3 +38552*x^2 +210*x -43) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(7*x -1)*(8*x -1)*(10*x -1)*(15*x -1)*(20*x -1)*(35*x -1)). - _Colin Barker_, Jan 12 2013 %Y A060485 Column k=7 of A060487. %Y A060485 Cf. A006095, A060483, A060484, A060486, A060090-A060095, A060069, A060070, A060051-A060053, A002718, A059443, A003462, A059945-A059951. %K A060485 nonn,easy %O A060485 4,1 %A A060485 _Vladeta Jovovic_, Mar 20 2001 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE