# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a065621 Showing 1-1 of 1 %I A065621 #41 Feb 14 2024 14:12:19 %S A065621 1,2,7,4,13,14,11,8,25,26,31,28,21,22,19,16,49,50,55,52,61,62,59,56, %T A065621 41,42,47,44,37,38,35,32,97,98,103,100,109,110,107,104,121,122,127, %U A065621 124,117,118,115,112,81,82,87,84,93,94,91,88,73,74,79,76,69,70,67,64,193 %N A065621 Reversing binary representation of n. Converting sum of powers of 2 in binary representation of a(n) to alternating sum gives n. %C A065621 a(0)=0. The alternation is applied only to the nonzero bits and does not depend on the exponent of two. All integers have a unique reversing binary representation (see cited exercise for proof). Complement of A048724. %C A065621 A permutation of the "odious" numbers A000069. %C A065621 Write n-1 and 2n-1 in binary and add them mod 2; example: n = 6, n-1 = 5 = 101 in binary, 2n-1 = 11 = 1011 in binary and their sum is 1110 = 14, so a(6) = 14. - _Philippe Deléham_, Apr 29 2005 %C A065621 As already pointed out, this is a permutation of the odious numbers A000069 and A010060(A000069(n)) = 1, so A010060(a(n)) = 1; and A010060(A048724(n)) = 0. - _Philippe Deléham_, Apr 29 2005. Also a(n) = A000069(A003188(n - 1)). %D A065621 D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 178, (exercise 4.1. Nr. 27) %H A065621 Reinhard Zumkeller, Table of n, a(n) for n = 1..8192 %F A065621 a(n) = if n=0 or n=1 then n else b+2*a(b+(1-2*b)*n)/2) where b is the least significant bit in n. %F A065621 a(n) = n XOR 2 (n - (n AND -n)). %F A065621 a(1) = 1, a(2n) = 2*a(n), a(2n+1) = 2*a(n+1) - 2(-1)^n + 1. - _Ralf Stephan_, Aug 20 2003 %F A065621 a(n) = A048724(n-1) - (-1)^n. - _Ralf Stephan_, Sep 10 2003 %F A065621 a(n) = Sum_{k=0..n} (1-(-1)^round(-n/2^k))/2*2^k. - _Benoit Cloitre_, Apr 27 2005 %F A065621 Closely related to Gray codes in another way: a(n) = 2 * A003188(n-1) + (n mod 2); a(n) = 4 * A003188((n-1) div 2) + (n mod 4). - Matt Erbst (matt(AT)erbst.org), Jul 18 2006 [corrected by _Peter Munn_, Jan 30 2021] %F A065621 a(n) = n XOR 2(n AND NOT -n). - _Chai Wah Wu_, Jun 29 2022 %F A065621 a(n) = A003188(2n-1). - _Friedjof Tellkamp_, Jan 18 2024 %e A065621 a(5) = 13 = 8 + 4 + 1 -> 8 - 4 + 1 = 5. %t A065621 f[n_] := BitXor[n, 2 n + 1]; Array[f, 60, 0] (* _Robert G. Wilson v_, Jun 09 2010 *) %o A065621 (PARI) a(n)=if(n<2,1,if(n%2==0,2*a(n/2),2*a((n+1)/2)-2*(-1)^((n-1)/2)+1)) %o A065621 (Haskell) %o A065621 import Data.Bits (xor, (.&.)) %o A065621 a065621 n = n `xor` 2 * (n - n .&. negate n) :: Integer %o A065621 -- _Reinhard Zumkeller_, Mar 26 2014 %o A065621 (Python) %o A065621 def a(n): return n^(2*(n - (n & -n))) # _Indranil Ghosh_, Jun 04 2017 %o A065621 (Python) %o A065621 def A065621(n): return n^ (n&~-n)<<1 # _Chai Wah Wu_, Jun 29 2022 %Y A065621 Cf. A003188, A065620, A048724, A072219, A073122. %Y A065621 Differs from A115857 for the first time at n=19, where a(19)=55, while A115857(19)=23. Cf. A104895, A115872, A114389, A114390, A105081. %Y A065621 Cf. A245471. %K A065621 easy,nonn,look %O A065621 1,2 %A A065621 _Marc LeBrun_, Nov 07 2001 %E A065621 More terms from _Ralf Stephan_, Sep 08 2003 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE