# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a064706 Showing 1-1 of 1 %I A064706 #39 Jun 30 2022 08:38:15 %S A064706 0,1,2,3,5,4,7,6,10,11,8,9,15,14,13,12,20,21,22,23,17,16,19,18,30,31, %T A064706 28,29,27,26,25,24,40,41,42,43,45,44,47,46,34,35,32,33,39,38,37,36,60, %U A064706 61,62,63,57,56,59,58,54,55,52,53,51,50,49,48,80,81,82,83,85,84,87,86 %N A064706 Square of permutation defined by A003188. %C A064706 Inverse of sequence A064707 considered as a permutation of the nonnegative integers. %C A064706 Not the same as A100282: a(n) = A100282(n) = A100280(A100280(n)) only for n < 64. - _Reinhard Zumkeller_, Nov 11 2004 %H A064706 Harry J. Smith, Table of n, a(n) for n = 0..1000 %H A064706 Index entries for sequences that are permutations of the natural numbers %F A064706 a(n) = A003188(A003188(n)). %F A064706 a(n) = n XOR floor(n/4), where XOR is binary exclusive OR. - _Paul D. Hanna_, Oct 25 2004 %F A064706 a(n) = A233280(A180201(n)), n > 0. - _Yosu Yurramendi_, Apr 05 2017 %F A064706 a(n) = A000695(A003188(A059905(n))) + 2*A000695(A003188(A059906(n))). - _Antti Karttunen_, Apr 14 2018 %t A064706 Array[BitXor[#, Floor[#/4]] &, 72, 0] (* _Michael De Vlieger_, Apr 14 2018 *) %o A064706 (MATLAB) A = 1; for i = 1:7 B = A(end:-1:1); A = [A (B + length(A))]; end A(A) - 1 %o A064706 (PARI) a(n)=bitxor(n,n\4) %o A064706 (PARI) { for (n=0, 1000, write("b064706.txt", n, " ", bitxor(n, n\4)) ) } \\ _Harry J. Smith_, Sep 22 2009 %o A064706 (R) %o A064706 maxn <- 63 # by choice %o A064706 b <- c(1,0,0) %o A064706 for(n in 4:maxn) b[n] <- b[n-1] - b[n-2] + b[n-3] %o A064706 # c(1,b) is A133872 %o A064706 a <- 1 %o A064706 for(n in 1:maxn) { %o A064706 a[2*n ] <- 2*a[n] + 1 - b[n] %o A064706 a[2*n+1] <- 2*a[n] + b[n] %o A064706 } %o A064706 (a <- c(0,a)) %o A064706 # _Yosu Yurramendi_, Oct 25 2020 %o A064706 (Python) %o A064706 def A064706(n): return n^ n>>2 # _Chai Wah Wu_, Jun 29 2022 %Y A064706 Cf. A064707 (inverse), A165211 (mod 2). %Y A064706 Cf. A003188, A000695, A059905, A059906. %Y A064706 Cf. also A054238, A163233, A302846. %K A064706 nonn,easy %O A064706 0,3 %A A064706 _N. J. A. Sloane_, Oct 13 2001 %E A064706 More terms from _David Wasserman_, Aug 02 2002 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE