# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a053582 Showing 1-1 of 1 %I A053582 #29 Dec 30 2023 23:49:05 %S A053582 1,11,211,4211,34211,234211,4234211,154234211,3154234211,93154234211, %T A053582 2093154234211,42093154234211,342093154234211,11342093154234211, %U A053582 3111342093154234211,63111342093154234211,2463111342093154234211,232463111342093154234211 %N A053582 a(n+1) is the smallest prime ending with a(n), where a(1)=1. %H A053582 Table of n, a(n) for n = 1..501 %e A053582 The least prime ending with seed 1 is 11; the least prime ending with 11 is 211; the least prime ending with 211 is 4211. - _Clark Kimberling_, Sep 17 2015 %p A053582 R:= 1: v:= 1: %p A053582 for iter from 1 to 30 do %p A053582 d:= ilog10(v)+1; %p A053582 for x from v+10^d by 10^d do %p A053582 if isprime(x) then R:= R, x; v:= x; break fi %p A053582 od %p A053582 od: %p A053582 R; # _Robert Israel_, Sep 24 2020 %t A053582 f[n_] := f[n] = Block[{j = f[n - 1], k = 1, l = Floor[Log[10, f[n - 1]] + 1]}, While[m = k*10^l + j; ! PrimeQ@ m, k++ ]; m]; f[1] = 1; Array[f, 17] %t A053582 nxt[n_]:=Module[{k=1,p=10^IntegerLength[n]},While[!PrimeQ[k*p+n],k++];k*p+n]; NestList[nxt,1,20] (* _Harvey P. Dale_, Jul 14 2016 *) %o A053582 (Python) %o A053582 from sympy import isprime %o A053582 from itertools import count, islice %o A053582 def agen(an=1): # generator of terms %o A053582 while True: %o A053582 yield an %o A053582 pow10 = 10**len(str(an)) %o A053582 for t in count(pow10+an, step=pow10): %o A053582 if isprime(t): %o A053582 an = t %o A053582 break %o A053582 print(list(islice(agen(), 18))) # _Michael S. Branicky_, Jun 23 2022 %Y A053582 Cf. A053583, A053584, A069612. %K A053582 base,nonn %O A053582 1,2 %A A053582 _G. L. Honaker, Jr._, Jan 18 2000 %E A053582 a(14)-a(17) corrected by _Robert G. Wilson v_, Dec 07 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE