# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a052909 Showing 1-1 of 1 %I A052909 #46 Aug 29 2023 21:34:00 %S A052909 1,5,16,49,148,445,1336,4009,12028,36085,108256,324769,974308,2922925, %T A052909 8768776,26306329,78918988,236756965,710270896,2130812689,6392438068, %U A052909 19177314205,57531942616,172595827849,517787483548,1553362450645 %N A052909 Expansion of g.f. (1+x-x^2)/((1-x)*(1-3*x)). %H A052909 Vincenzo Librandi, Table of n, a(n) for n = 0..1000 %H A052909 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 889 %H A052909 Index entries for linear recurrences with constant coefficients, signature (4,-3). %F A052909 a(n) = 3*a(n-1) + 1, with a(0)=1, a(1)=5, a(2)=16. %F A052909 a(n) = (11*3^n - 3)/6. %F A052909 a(n) = 4*a(n-1) - 3*a(n-2). - _Vincenzo Librandi_, Jun 22 2012 %F A052909 a(n+1) = A237930(n) + 2*A000244(n). - _Philippe Deléham_, Feb 17 2014 %F A052909 a(n) = Sum_{k=1..3} floor((3^n)/k). - _Lechoslaw Ratajczak_, Jul 31 2016 %F A052909 E.g.f.: (11*exp(3*x) - 3*exp(x) - 2)/6. - _Stefano Spezia_, Aug 28 2023 %e A052909 Ternary.......................Decimal %e A052909 1...................................1 %e A052909 12..................................5 %e A052909 121................................16 %e A052909 1211...............................49 %e A052909 12111.............................148 %e A052909 121111............................445 %e A052909 1211111..........................1336 %e A052909 12111111.........................4009 %e A052909 121111111.......................12028 %e A052909 1211111111......................36085, etc. - _Philippe Deléham_, Feb 17 2014 %p A052909 spec := [S,{S=Prod(Union(Sequence(Z),Z),Sequence(Union(Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); %t A052909 CoefficientList[Series[(1+x-x^2)/((1-x)*(1-3*x)),{x,0,30}],x] (* _Vincenzo Librandi_, Jun 22 2012 *) %t A052909 Join[{1}, (11*3^Range[30] -3)/6] (* _G. C. Greubel_, Oct 15 2019 *) %o A052909 (Magma) I:=[1, 5, 16]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jun 22 2012 %o A052909 (PARI) vector(30, n, if(n==1, 1, (11*3^(n-1) - 3)/6)) \\ _G. C. Greubel_, Oct 15 2019 %o A052909 (Sage) [1]+[(11*3^n -3)/6 for n in (1..30)] # _G. C. Greubel_, Oct 15 2019 %o A052909 (GAP) Concatenation([1], List([1..30], n-> (11*3^n - 3)/6)); # _G. C. Greubel_, Oct 15 2019 %Y A052909 Cf. A000244, A237930. %K A052909 nonn,easy %O A052909 0,2 %A A052909 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 %E A052909 More terms from _James A. Sellers_, Jun 08 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE