# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a052815 Showing 1-1 of 1 %I A052815 #13 Aug 10 2020 22:21:52 %S A052815 0,1,2,5,16,56,221,900,3839,16752,74701,338327,1553181,7208191, %T A052815 33768389,159463655,758291989,3627890869,17450572584,84342086908, %U A052815 409394388458,1994883122360,9754673396640,47850963112328,235413886888082,1161267995487057,5742484341773444 %N A052815 Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification. %H A052815 Andrew Howroyd, Table of n, a(n) for n = 0..200 %H A052815 C. G. Bower, Transforms (2). %H A052815 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 780 %H A052815 Maplesoft, Combstruct grammars. %F A052815 G.f.: 1 - x/g(x) where g(x) is the g.f. of A052818. - _Andrew Howroyd_, Aug 10 2020 %p A052815 spec := [S,{B=Prod(C,Z),C=Sequence(S),S=Cycle(B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); %o A052815 (PARI) \\ CIK (necklace, indistinct, unlabeled) in Transforms (2). %o A052815 CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))} %o A052815 seq(n)={my(p=O(x)); for(n=1, n, p=CIK(x/(1-p), n)); Vec(p, -(n+1))} \\ _Andrew Howroyd_, Aug 10 2020 %Y A052815 Cf. A052818. %K A052815 easy,nonn %O A052815 0,3 %A A052815 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 %E A052815 Terms a(21) and beyond from _Andrew Howroyd_, Aug 10 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE