# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a052649 Showing 1-1 of 1 %I A052649 #48 Feb 17 2024 04:03:27 %S A052649 2,5,14,54,264,1560,10800,85680,766080,7620480,83462400,997920000, %T A052649 12933043200,180583603200,2702527027200,43153254144000, %U A052649 732297646080000,13160434839552000,249692574523392000,4987449116762112000,104614786351595520000,2299092397726924800000 %N A052649 Expansion of e.g.f. (2+x-x^2)/(1-x)^2. %C A052649 a(1) is 5 and gives the row number in the table of 0-origin permutations of order 3 in which the first 3 items are reversed. Row 5 of this table is 2 1 0. a(2) is 14 and gives the row number in the table of 0-origin permutations of order 4 in which the first three items are reversed. Row 14 of this table is 2 1 0 3.... a(6) is 10800 and gives the row number in the table of 0-origin permutations of order 8 in which the first 3 items are reversed. Row 10800 of this table is 2 1 0 3 4 5 6 7. Et cetera. - Eugene McDonnell (eemcd(AT)mac.com), Dec 03 2004 %C A052649 In factorial base representation (A007623) the terms of this sequence are written as: 10, 21, 210, 2100, 21000, 210000, ... From a(1) = 5 = "21" onward each term begins always with "21", which is then followed by n-1 zeros. - _Antti Karttunen_, Sep 24 2016 %H A052649 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 596. %H A052649 Index entries for sequences related to factorial base representation. %F A052649 a(n) = (3+2*n)*n!. %F A052649 E.g.f.: -(-x+x^2-2)/(-1+x)^2. %F A052649 Recurrence: a(0)=2, a(1)=5, (-7*n-5-2*n^2)*a(n)+(3+2*n)*a(n+1)=0 for n>=1. %F A052649 a(n) = A129326(n), n>1. - _R. J. Mathar_, Jun 14 2008 %F A052649 a(n) = (n+1)*a(n-1) - 2*A001048(n-1). - _Gary Detlefs_, Dec 16 2009 %F A052649 a(0) = 2; for n >= 1, a(n) = 2*(n+1)! + n! - _Antti Karttunen_, Sep 24 2016 %F A052649 From _Amiram Eldar_, Feb 17 2024: (Start) %F A052649 Sum_{n>=0} 1/a(n) = 1/6 + e/2 - erfi(1)*sqrt(Pi)/4, where erfi is the imaginary error function. %F A052649 Sum_{n>=0} (-1)^n/a(n) = 1/6 - 1/(2*e) + erf(1)*sqrt(Pi)/4, where erf is the error function. (End) %p A052649 spec := [S,{S=Prod(Sequence(Z),Union(Z,Sequence(Z),Sequence(Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20); %t A052649 f[n_] := (3 + 2 n) n!; f[0] = 2; Array[f, 19, 0] %t A052649 a[n_] := a[n] = a[n - 1]*n (2 n + 3)/(2 n + 1); a[0] = 2; a[1] = 5; Array[ a, 19, 0] (* _Robert G. Wilson v_ *) %t A052649 With[{nn=20},CoefficientList[Series[(2+x-x^2)/(1-x)^2,{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Nov 09 2017 *) %o A052649 (PARI) a(n)=if(n<=1,[2,5][n+1], a(n-1)*(n*(2*n+3))/(2*n+1) ); %o A052649 for(n=0,11,print1(a(n),", ")) %o A052649 (Scheme) (define (A052649 n) (if (zero? n) 2 (+ (A000142 n) (* 2 (A000142 (+ 1 n)))))) ;; _Antti Karttunen_, Sep 24 2016 %Y A052649 Cf. A000142, A001048, A007623, A129326. %Y A052649 Row 4 of A276955 (from a(1)=5 onward). %K A052649 easy,nonn %O A052649 0,1 %A A052649 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE