# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a059540
Showing 1-1 of 1
%I A059540 #26 Jul 17 2024 04:19:40
%S A059540 3,6,9,13,16,19,22,26,29,32,35,39,42,45,48,52,55,58,61,65,68,71,75,78,
%T A059540 81,84,88,91,94,97,101,104,107,110,114,117,120,123,127,130,133,136,
%U A059540 140,143,146,150,153,156,159,163,166,169,172,176,179,182,185,189,192
%N A059540 Beatty sequence for 3^(1/3)/(3^(1/3)-1).
%H A059540 Harry J. Smith, Table of n, a(n) for n = 1..2000
%H A059540 Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
%H A059540 Eric Weisstein's World of Mathematics, Beatty Sequence
%H A059540 Index entries for sequences related to Beatty sequences
%F A059540 a(n) = floor(n/(1 - A072365)). - _Paolo Xausa_, Jul 17 2024
%t A059540 Floor[Range[100]/(1 - 3^(-1/3))] (* _Paolo Xausa_, Jul 17 2024 *)
%o A059540 (PARI) { default(realprecision, 100); b=3^(1/3)/(3^(1/3) - 1); for (n = 1, 2000, write("b059540.txt", n, " ", floor(n*b)); ) } \\ _Harry J. Smith_, Jun 28 2009
%Y A059540 Beatty complement is A059539.
%Y A059540 Cf. A072365.
%K A059540 nonn,easy
%O A059540 1,1
%A A059540 _Mitch Harris_, Jan 22 2001
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE