# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a058774 Showing 1-1 of 1 %I A058774 #18 Jul 10 2018 09:49:53 %S A058774 1,0,0,1,1,0,1,0,2,1,2,1,2,2,3,2,3,2,4,3,5,4,5,5,7,6,8,6,10,8,12,10, %T A058774 14,13,16,14,19,16,22,20,26,23,29,28,35,32,39,36,47,42,53,49,60,58,70, %U A058774 66,79,74,91,86,104,98,115,114,133,128,150,144,171,166 %N A058774 McKay-Thompson series of class 110A for Monster. %H A058774 Vaclav Kotesovec, Table of n, a(n) for n = -1..3200 (computed by David A. Madore) %H A058774 D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994). %H A058774 David A. Madore, Coefficients of Moonshine (McKay-Thompson) series, The Math Forum %H A058774 Index entries for McKay-Thompson series for Monster simple group %F A058774 a(n) ~ exp(4*Pi*sqrt(n/110)) / (sqrt(2) * 110^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jul 10 2018 %e A058774 T110A = 1/q + q^2 + q^3 + q^5 + 2*q^7 + q^8 + 2*q^9 + q^10 + 2*q^11 + 2*q^12 + ... %Y A058774 Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc. %K A058774 nonn %O A058774 -1,9 %A A058774 _N. J. A. Sloane_, Nov 27 2000 %E A058774 More terms from _Michel Marcus_, Feb 19 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE