# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a056545 Showing 1-1 of 1 %I A056545 #41 Aug 15 2024 06:40:13 %S A056545 1,5,41,493,7889,157781,3786745,106028861,3392923553,122145247909, %T A056545 4885809916361,214975636319885,10318830543354481,536579188254433013, %U A056545 30048434542248248729,1802906072534894923741,115385988642233275119425 %N A056545 a(n) = 4*n*a(n-1) + 1 with a(0)=1. %C A056545 For positive n, a(n) equals 4^n times the permanent of the n X n matrix with (5/4)'s along the main diagonal and 1's everywhere else. - _John M. Campbell_, Jul 10 2011 %H A056545 Harvey P. Dale, Table of n, a(n) for n = 0..365 %H A056545 Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1. %F A056545 a(n) = floor(e^(1/4)*4^n*n!). %F A056545 From _Philippe Deléham_, Mar 14 2004: (Start) %F A056545 a(n) = n!*Sum_{k=0..n} 4^(n-k)/k!. %F A056545 E.g.f.: exp(x)/(1 - 4*x). (End) %F A056545 a(n) = Sum_{k=0..n} P(n, k)*4^k. - _Ross La Haye_, Aug 29 2005 %F A056545 a(n) = hypergeometric_U(1, n+2 , 1/4)/4. - _Peter Luschny_, Nov 26 2014 %F A056545 a(n) = exp(1/4)*4^n*Gamma(n+1, 1/4). a(n) ~ sqrt(2*Pi)*4^n*n^(n+1/2)*exp(1/4-n). - _Vladimir Reshetnikov_, Oct 14 2016 %F A056545 From _Peter Bala_, Mar 01 2017: (Start) %F A056545 a(n) = Integral_{x = 0..inf} (4*x + 1)^n*exp(-x) dx. %F A056545 The e.g.f. y = exp(x)/(1 - 4*x) satisfies the differential equation (1 - 4*x)*y' = (5 - 4*x)*y. %F A056545 a(n) = (4*n + 1)*a(n-1) - 4*(n - 1)*a(n-2). %F A056545 The sequence b(n) := 4^n*n! also satisfies the same recurrence with b(0) = 1, b(1) = 4. This leads to the continued fraction representation a(n) = 4^n*n!*( 1 + 1/(4 - 4/(9 - 8/(13 - ... - (4*n - 4)/(4*n + 1) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(1/4) = 1 + 1/(4 - 4/(9 - 8/(13 - ... - (4*n - 4)/((4*n + 1) - ... )))). Cf. A010844. (End) %e A056545 a(2) = 4*2*a(1) + 1 = 8*5 + 1 = 41. %t A056545 Round@Table[Exp[1/4] 4^n Gamma[n + 1, 1/4], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster; _Vladimir Reshetnikov_, Oct 14 2016 *) %t A056545 nxt[{n_,a_}]:={n+1,4a(n+1)+1}; NestList[nxt,{0,1},20][[All,2]] (* _Harvey P. Dale_, Mar 19 2019 *) %Y A056545 Cf. A000522, A010844, A010845, A056546, A056547, A001907 for analogs. A056545/(A000142*A000302) is an increasingly good approximation to 4th root of e. %K A056545 nonn,easy %O A056545 0,2 %A A056545 _Henry Bottomley_, Jun 20 2000 %E A056545 More terms from _James A. Sellers_, Jul 04 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE