# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a055417 Showing 1-1 of 1 %I A055417 #20 Feb 05 2022 16:48:12 %S A055417 1,3,6,11,20,36,63,106,171,265,396,573,806,1106,1485,1956,2533,3231, %T A055417 4066,5055,6216,7568,9131,10926,12975,15301,17928,20881,24186,27870, %U A055417 31961,36488,41481,46971,52990,59571,66748,74556,83031,92210,102131,112833,124356 %N A055417 Number of points in N^n of norm <= 2. %C A055417 Binomial transform of [1, 0, 2, -1, 2, -1, 1, -1, 1, -1, 1, ...]. - _Gary W. Adamson_, Mar 12 2009 %H A055417 Andrew Howroyd, Table of n, a(n) for n = 0..1000 %F A055417 a(n) = (n^3 - 3*n^2 + 14*n + 24)*(n+1)/24. Proof: The coordinates of such a point are a permutation of one of the vectors (0, ..., 0), (0, ..., 0, 1), (0, ..., 0, 2), (0, ..., 0, 1, 1), (0, ..., 0, 1, 1, 1), or (0, ..., 0, 1, 1, 1, 1), so the number of points is 1 + n + n + binomial(n,2) + binomial(n,3) + binomial(n,4). - Formula conjectured by _Frank Ellermann_, Mar 16 2002 and explained by _Michael Somos_, Apr 25 2003 %F A055417 G.f.: (1-2*x+x^2+x^3)/(1-x)^5. - _Michael Somos_, Apr 25 2003 %e A055417 {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 2, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (2, 0, 0)} are all the points in N^3 of norm <= 2 so a(3)=11. %t A055417 CoefficientList[Series[(-z^3 - z^2 + 2*z - 1)/(z - 1)^5, {z, 0, 100}], z] (* and *) Table[(n^4 - 6*n^3 + 23 n^2 + 6*n)/24, {n, 1, 100}] (* _Vladimir Joseph Stephan Orlovsky_, Jul 17 2011 *) %o A055417 (PARI) a(n)=(n^3-3*n^2+14*n+24)*(n+1)/24 %Y A055417 Row n=2 of A302998. %K A055417 nonn %O A055417 0,2 %A A055417 _David W. Wilson_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE