# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a055154 Showing 1-1 of 1 %I A055154 #28 Apr 16 2024 13:48:04 %S A055154 1,1,3,1,1,12,32,35,21,7,1,1,39,321,1225,2919,4977,6431,6435,5005, %T A055154 3003,1365,455,105,15,1,1,120,2560,24990,155106,711326,2597410, %U A055154 7856550,20135050,44337150,84665490,141118250,206252550,265182450,300540190 %N A055154 Triangle read by rows: T(n,k) = number of k-covers of a labeled n-set, k=1..2^n-1. %C A055154 Row sums give A003465. %C A055154 From _Manfred Boergens_, Apr 11 2024: (Start) %C A055154 If more than half of the nonempty subsets of [n] are drawn their union covers [n] (see Formula). - The proof is based on 2^(n-1)-1 being the number of nonempty subsets of [n] with one fixed element of [n] missing. %C A055154 For covers which may include one empty set see A163353. %C A055154 For disjoint covers see A008277. (End) %D A055154 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 165. %H A055154 Alois P. Heinz, Rows n = 1..10, flattened %F A055154 T(n,k) = Sum_{j=0..n} (-1)^j*C(n, j)*C(2^(n-j)-1, k), k=1..2^n-1. %F A055154 From _Vladeta Jovovic_, May 30 2004: (Start) %F A055154 T(n,k) = (1/k!)*Sum_{j=0..k} Stirling1(k+1, j+1)*(2^j-1)^n. %F A055154 E.g.f.: Sum(exp(y*(2^n-1))*log(1+x)^n/n!, n=0..infinity)/(1+x). (End) %F A055154 Also exp(-y)*Sum((1+x)^(2^n-1)*y^n/n!, n=0..infinity). %F A055154 From _Manfred Boergens_, Apr 11 2024: (Start) %F A055154 T(n,k) = C(2^n-1,k) for k>=2^(n-1). %F A055154 T(n,k) < C(2^n-1,k) for k<2^(n-1). %F A055154 (Note: C(2^n-1,k) is the number of all k-subsets of P([n])\{{}}.) (End) %e A055154 Triangle begins: %e A055154 [1], %e A055154 [1,3,1], %e A055154 [1,12,32,35,21,7,1], %e A055154 ... %e A055154 There are 35 4-covers of a labeled 3-set. %t A055154 nn=5;Map[Select[#,#>0&]&,Transpose[Table[Table[Sum[(-1)^j Binomial[n,j] Binomial[2^(n-j)-1,m],{j,0,n}],{n,1,nn}],{m,1,2^nn-1}]]]//Grid (* _Geoffrey Critzer_, Jun 27 2013 *) %Y A055154 Cf. A054780, A055621. %Y A055154 Cf. A369950 (partial row sums). %Y A055154 Columns: A029858, A095152, A095153, A095155. %K A055154 easy,nonn,tabf %O A055154 1,3 %A A055154 _Vladeta Jovovic_, Jun 14 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE