# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a054344 Showing 1-1 of 1 %I A054344 #24 Jun 13 2015 00:50:14 %S A054344 9,1064,21656,197484,1143366,4927524,17240292,51631617,137044523, %T A054344 330284988,735542444,1533609350,3024043008,5684167992,10249533240, %U A054344 17821214019,30006185613,49097892704,78305096016 %N A054344 Number of ways of covering a 2n X 2n lattice with 2n^2 dominoes of which exactly 6 are horizontal (or vertical) dominoes. %H A054344 Vincenzo Librandi, Table of n, a(n) for n = 2..1000 %H A054344 M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Physical Review, 124 (1961), 1664-1672. %H A054344 P. W. Kasteleyn, The Statistics of Dimers on a Lattice, Physica, 27 (1961), 1209-1225. %H A054344 Index entries for sequences related to dominoes %H A054344 Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1). %F A054344 a(n) = (1/720)*n*(n+1)*(120*n^7-300*n^6-70*n^5+363*n^4+416*n^3-231*n^2-394*n-264). %F A054344 G.f.: x^2*(x^9-10*x^8+45*x^7-36*x^6+3096*x^5+17256*x^4+27724*x^3+11421*x^2+974*x+9)/(x-1)^10. - _Colin Barker_, Jun 26 2012 %e A054344 a(3) = 1064 because we have 1064 ways to cover a 36 X 36 lattice with exactly 6 horizontal (or vertical) dominoes and exactly 12 vertical (or horizontal) dominoes. %t A054344 CoefficientList[Series[(x^9-10*x^8+45*x^7-36*x^6+3096*x^5 +17256*x^4 +27724*x^3+11421*x^2+974*x+9)/(x-1)^10,{x,0,30}],x] (* _Vincenzo Librandi_, Jun 26 2012 *) %Y A054344 Cf. A004003, A002414, A038758. %K A054344 nonn,easy %O A054344 2,1 %A A054344 Yong Kong (ykong(AT)curagen.com), May 06 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE