# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a047502 Showing 1-1 of 1 %I A047502 #17 Sep 08 2022 08:44:57 %S A047502 2,3,4,5,7,10,11,12,13,15,18,19,20,21,23,26,27,28,29,31,34,35,36,37, %T A047502 39,42,43,44,45,47,50,51,52,53,55,58,59,60,61,63,66,67,68,69,71,74,75, %U A047502 76,77,79,82,83,84,85,87,90,91,92,93,95,98,99,100,101,103 %N A047502 Numbers that are congruent to {2, 3, 4, 5, 7} mod 8. %H A047502 Vincenzo Librandi, Table of n, a(n) for n = 1..1000 %H A047502 Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1). %F A047502 G.f.: ( x*(2+x+x^2+x^3+2*x^4+x^5) ) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - _R. J. Mathar_, Nov 06 2015 %F A047502 From _Wesley Ivan Hurt_, Jul 31 2016: (Start) %F A047502 a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5. %F A047502 a(n) = (40*n - 15 - 2*(n mod 5) + 3*((n+1) mod 5) + 3*((n+2) mod 5) + 3*((n+3) mod 5) - 7*((n+4) mod 5))/25. %F A047502 a(5k) = 8k-1, a(5k-1) = 8k-3, a(5k-2) = 8k-4, a(5k-3) = 8k-5, a(5k-4) = 8k-6. (End) %p A047502 A047502:=n->8*floor(n/5)+[(2, 3, 4, 5, 7)][(n mod 5)+1]: seq(A047502(n), n=0..100); # _Wesley Ivan Hurt_, Jul 31 2016 %t A047502 Select[Range[0, 100], MemberQ[{2, 3, 4, 5, 7}, Mod[#, 8]] &] (* _Wesley Ivan Hurt_, Jul 31 2016 *) %o A047502 (Magma) [n : n in [0..150] | n mod 8 in [2, 3, 4, 5, 7]]; // _Wesley Ivan Hurt_, Jul 31 2016 %K A047502 nonn,easy %O A047502 1,1 %A A047502 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE