# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a047280 Showing 1-1 of 1 %I A047280 #35 Sep 15 2022 01:07:17 %S A047280 3,6,10,13,17,20,24,27,31,34,38,41,45,48,52,55,59,62,66,69,73,76,80, %T A047280 83,87,90,94,97,101,104,108,111,115,118,122,125,129,132,136,139,143, %U A047280 146,150,153,157,160,164,167,171,174,178,181,185,188,192,195,199,202 %N A047280 Numbers that are congruent to {3, 6} mod 7. %H A047280 David Lovler, Table of n, a(n) for n = 1..1000 %H A047280 Index entries for linear recurrences with constant coefficients, signature (1,1,-1). %F A047280 a(n) = 7*n - a(n-1) - 5 with n > 1, a(1)=3. - _Vincenzo Librandi_, Aug 05 2010 %F A047280 G.f.: x*(3 + 3*x + x^2) / ( (1+x)*(x-1)^2 ). - _R. J. Mathar_, Oct 25 2011 %F A047280 a(n) = 3*n + ceiling(n/2) - 1. - _Arkadiusz Wesolowski_, Sep 20 2012 %F A047280 a(n) = 4n - 1 - floor(n/2). - _Wesley Ivan Hurt_, Oct 16 2013 %F A047280 E.g.f.: 1 + ((14*x - 3)*exp(x) - exp(-x))/4. - _David Lovler_, Sep 14 2022 %p A047280 A047280:=n->4*n-1-floor(n/2); seq(A047280(k),k=1..100); # _Wesley Ivan Hurt_, Oct 16 2013 %t A047280 Flatten[#+{3,6}&/@(7Range[0,30])] (* _Harvey P. Dale_, Jan 11 2011 *) %o A047280 (PARI) a(n) = 4*n - 1 - floor(n/2) \\ _David Lovler_, Sep 14 2022 %K A047280 nonn,easy %O A047280 1,1 %A A047280 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE