# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a047249 Showing 1-1 of 1 %I A047249 #19 Sep 08 2022 08:44:56 %S A047249 3,4,5,9,10,11,15,16,17,21,22,23,27,28,29,33,34,35,39,40,41,45,46,47, %T A047249 51,52,53,57,58,59,63,64,65,69,70,71,75,76,77,81,82,83,87,88,89,93,94, %U A047249 95,99,100,101,105,106,107,111,112,113,117,118,119,123,124 %N A047249 Numbers that are congruent to {3, 4, 5} mod 6. %H A047249 Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). %F A047249 G.f.: x*(3+x+x^2+x^3) / ((1+x+x^2)*(x-1)^2). - _R. J. Mathar_, Oct 08 2011 %F A047249 From _Wesley Ivan Hurt_, Jun 10 2016: (Start) %F A047249 a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. %F A047249 a(n) = 2*n-cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3). %F A047249 a(3k) = 6k-1, a(3k-1) = 6k-2, a(3k-2) = 6k-3. (End) %F A047249 Sum_{n>=1} (-1)^(n+1)/a(n) = (9-2*sqrt(3))*Pi/36 + log(2)/6 - log(2+sqrt(3))/(2*sqrt(3)). - _Amiram Eldar_, Dec 16 2021 %p A047249 A047249:=n->2*n-cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3): seq(A047249(n), n=1..100); # _Wesley Ivan Hurt_, Jun 10 2016 %t A047249 Select[Range[150], MemberQ[{3,4,5}, Mod[#,6]]&] (* _Harvey P. Dale_, Nov 21 2012 *) %o A047249 (Magma) [n : n in [0..150] | n mod 6 in [3..5]]; // _Wesley Ivan Hurt_, Jun 10 2016 %K A047249 nonn,easy %O A047249 1,1 %A A047249 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE