# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a037276
Showing 1-1 of 1
%I A037276 #59 Mar 09 2021 19:12:33
%S A037276 1,2,3,22,5,23,7,222,33,25,11,223,13,27,35,2222,17,233,19,225,37,211,
%T A037276 23,2223,55,213,333,227,29,235,31,22222,311,217,57,2233,37,219,313,
%U A037276 2225,41,237,43,2211,335,223,47,22223,77,255,317,2213,53,2333
%N A037276 Start with 1; for n>1, replace n with the concatenation of its prime factors in increasing order.
%H A037276 N. J. A. Sloane, Table of n, a(n) for n = 1..20000 [First 10000 terms from T. D. Noe]
%H A037276 Patrick De Geest, Home Primes
%H A037276 N. J. A. Sloane, Confessions of a Sequence Addict (AofA2017), slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence.
%H A037276 N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
%H A037276 Eric Weisstein's World of Mathematics, Home Prime
%e A037276 If n = 2^3*5^5*11^2 = 3025000, a(n) = 222555551111 (n=2*2*2*5*5*5*5*5*11*11, then remove the multiplication signs).
%p A037276 # This is for n>1
%p A037276 read("transforms") ;
%p A037276 A037276 := proc(n)
%p A037276 local L,p ;
%p A037276 L := [] ;
%p A037276 for p in ifactors(n)[2] do
%p A037276 L := [op(L),seq(op(1,p),i=1..op(2,p))] ;
%p A037276 end do:
%p A037276 digcatL(L) ;
%p A037276 end proc: # _R. J. Mathar_, Oct 29 2012
%t A037276 co[n_, k_] := Nest[Flatten[IntegerDigits[{#, n}]] &, n, k - 1]; Table[FromDigits[Flatten[IntegerDigits[co @@@ FactorInteger[n]]]], {n, 54}] (* _Jayanta Basu_, Jul 04 2013 *)
%t A037276 FromDigits@ Flatten@ IntegerDigits[Table[#1, {#2}] & @@@ FactorInteger@ #] & /@ Range@ 54 (* _Michael De Vlieger_, Jul 14 2015 *)
%o A037276 (PARI) a(n)={ n<4 & return(n); for(i=1,#n=factor(n)~, n[1,i]=concat(vector(n[2,i],j,Str(n[1,i])))); eval(concat(n[1,]))} \\ _M. F. Hasler_, Jun 19 2011
%o A037276 (Haskell)
%o A037276 a037276 = read . concatMap show . a027746_row
%o A037276 -- _Reinhard Zumkeller_, Apr 03 2012
%o A037276 (Python)
%o A037276 from sympy import factorint
%o A037276 def a(n):
%o A037276 f=factorint(n)
%o A037276 l=sorted(f)
%o A037276 return 1 if n==1 else int("".join(str(i)*f[i] for i in l))
%o A037276 print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Jun 23 2017
%Y A037276 Cf. A037274, A048985, A067599, A080670, A084796. Different from A073646.
%Y A037276 Cf. also A027746, A289660 (a(n)-n).
%K A037276 nonn,easy,base
%O A037276 1,2
%A A037276 _N. J. A. Sloane_
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE