# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a036009 Showing 1-1 of 1 %I A036009 #8 May 10 2018 03:36:35 %S A036009 1,2,3,5,7,11,15,22,30,41,55,75,98,130,168,219,280,360,455,578,725, %T A036009 910,1132,1410,1740,2149,2636,3232,3940,4801,5819,7050,8503,10245, %U A036009 12298,14749,17625,21042,25045,29776,35305,41815,49400,58300,68648 %N A036009 Number of partitions of n into parts not of the form 25k, 25k+10 or 25k-10. Also number of partitions with at most 9 parts of size 1 and differences between parts at distance 11 are greater than 1. %C A036009 Case k=12,i=10 of Gordon Theorem. %D A036009 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109. %F A036009 a(n) ~ exp(2*Pi*sqrt(11*n/3)/5) * ((11*(3 + sqrt(5)))/30)^(1/4) / (10 * n^(3/4)). - _Vaclav Kotesovec_, May 10 2018 %t A036009 nmax = 60; Rest[CoefficientList[Series[Product[(1 - x^(25*k))*(1 - x^(25*k+10-25))*(1 - x^(25*k-10))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, May 10 2018 *) %K A036009 nonn,easy %O A036009 1,2 %A A036009 _Olivier GĂ©rard_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE