# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a023272 Showing 1-1 of 1 %I A023272 #44 Sep 08 2022 08:44:47 %S A023272 2,5,89,179,359,509,1229,1409,2699,3539,6449,10589,11549,11909,12119, %T A023272 17159,19709,19889,22349,26189,27479,30389,43649,53639,53849,55229, %U A023272 57839,60149,61409,63419,66749,71399,74699,75329,82499,87539,98369,101399,104369 %N A023272 Primes that remain prime through 3 iterations of the function f(x) = 2*x + 1. %C A023272 Primes p such that 2*p+1, 4*p+3 and 8*p+7 are also primes. - _Vincenzo Librandi_, Aug 04 2010 %C A023272 For n > 2, a(n) == 29 (mod 30). - _Zak Seidov_, Jan 31 2013 %H A023272 Nathaniel Johnston, Table of n, a(n) for n = 1..1000 %p A023272 p:=2: for n from 1 to 5000 do if(isprime(2*p+1) and isprime(4*p+3) and isprime(8*p+7))then printf("%d, ",p): fi: p:=nextprime(p): od: # _Nathaniel Johnston_, Jun 30 2011 %t A023272 Select[Prime[Range[10^3*4]], PrimeQ[a1=2*#+1] && PrimeQ[a2=2*a1+1] && PrimeQ[a3=2*a2+1] &] (* _Vladimir Joseph Stephan Orlovsky_, May 01 2008 *) %t A023272 Join[{2, 5}, Select[Range[89, 104369, 30], PrimeQ[#] && PrimeQ[2*# + 1] && PrimeQ[4*# + 3] && PrimeQ[8*# + 7] &]] (* _Zak Seidov_, Jan 31 2013 *) %t A023272 p3iQ[n_]:=AllTrue[NestList[2#+1&,n,3],PrimeQ]; Join[{2,5},Select[ Range[ 89,200000,30],p3iQ]] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 30 2019 *) %o A023272 (Magma) [n: n in [1..100000] | IsPrime(n) and IsPrime(2*n+1) and IsPrime(4*n+3) and IsPrime(8*n+7)] // _Vincenzo Librandi_, Aug 04 2010 %o A023272 (PARI) is(n)=isprime(n)&&isprime(2*n+1)&&isprime(4*n+3)&&isprime(8*n+7) \\ _Charles R Greathouse IV_, Mar 21 2013 %Y A023272 Intersection of A007700 and A023231. %Y A023272 Cf. A005384, A005385, A023302, A023330, A057331, A005602. %K A023272 nonn %O A023272 1,1 %A A023272 _David W. Wilson_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE