# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a028418 Showing 1-1 of 1 %I A028418 #41 Dec 08 2018 20:02:57 %S A028418 1,3,13,67,411,2911,23563,213543,2149927,23759791,286370151, %T A028418 3734929903,52455166063,788704078527,12648867695311,215433088624351, %U A028418 3884791172487903,73919882720901823,1480542628345939807,31128584449987511871,685635398619169059391 %N A028418 Sum over all n! permutations of n letters of maximum cycle length. %C A028418 Sum the n-permutations having at least 1 cycle of length >= i for all i >= 1. A000142 + A033312 + A066052 + A202364 + ... The summation is precisely that indicated in the title since each permutation whose longest cycle = i is counted i times. - _Geoffrey Critzer_, Jan 09 2013 %D A028418 S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 183. %D A028418 R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 358. %H A028418 Alois P. Heinz, Table of n, a(n) for n = 1..450 (first 142 terms from Thomas Dybdahl Ahle) %H A028418 Ph. Flajolet and A. Odlyzko, Singularity analysis of generating functions, p. 22. %F A028418 E.g.f.: Sum_{k>=0} (1/(1-x) - exp(Sum_{j=1..k} x^j/j)). %F A028418 a(n) = f(n, 0, n, n!) where f(L, r, n, m) = m*r if r >= l, otherwise Sum_{k=0..L-1} (f(k, max(L-k,r), n-1, m/n) + (n-L)*f(L, r, n-1, m/n)). - _Thomas Dybdahl Ahle_, Aug 15 2011 %F A028418 a(n) = Sum_{k=1..n} k * A126074(n,k). - _Alois P. Heinz_, May 17 2016 %p A028418 b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!* %p A028418 b(n-j, max(m,j))*binomial(n-1, j-1), j=1..n)) %p A028418 end: %p A028418 a:= n-> b(n, 0): %p A028418 seq(a(n), n=1..25); # _Alois P. Heinz_, May 14 2016 %t A028418 kmax = 19; gf[x_] = Sum[ 1/(1-x) - 1/(E^((x^(1+k)*Hypergeometric2F1[1+k, 1, 2+k, x])/ (1+k))*(1-x)), {k, 0, kmax}]; %t A028418 a[n_] := n!*Coefficient[Series[gf[x], {x, 0, kmax}], x^n]; Array[a, kmax] %t A028418 (* _Jean-François Alcover_, Jun 22 2011, after e.g.f. *) %t A028418 a[ n_] := If[ n < 1, 0, 1 + Total @ Apply[ Max, Map[ Length, First /@ PermutationCycles /@ Drop[ Permutations @ Range @ n, 1], {2}], 1]]; (* _Michael Somos_, Aug 19 2018 *) %Y A028418 Cf. A006128, A028417, A060014, A126074. %Y A028418 Column k=1 of A322384. %K A028418 nonn %O A028418 1,2 %A A028418 Joe Keane (jgk(AT)jgk.org) %E A028418 More terms from _Vladeta Jovovic_, Sep 19 2002 %E A028418 More terms from _Thomas Dybdahl Ahle_, Aug 15 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE