# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a015564 Showing 1-1 of 1 %I A015564 #45 Dec 18 2023 12:19:56 %S A015564 0,1,7,55,427,3319,25795,200479,1558123,12109735,94116883,731476591, %T A015564 5685037435,44184121591,343399075747,2668898259775,20742682272907, %U A015564 161212165468999,1252941251920435,9737861756257039,75682679805321883 %N A015564 Expansion of x/(1 - 7*x - 6*x^2). %C A015564 Pisano period lengths: 1, 1, 1, 1, 12, 1, 4, 2, 3, 12, 15, 1, 168, 4, 12, 4, 288, 3, 18, 12, ... - _R. J. Mathar_, Aug 10 2012 %H A015564 Vincenzo Librandi, Table of n, a(n) for n = 0..1000 %H A015564 Lucyna Trojnar-Spelina and Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7. %H A015564 Index entries for linear recurrences with constant coefficients, signature (7,6). %F A015564 a(n) = 7*a(n-1) + 6*a(n-2). %t A015564 LinearRecurrence[{7, 6}, {0, 1}, 30] (* _Vincenzo Librandi_, Nov 14 2012 *) %o A015564 (Sage) [lucas_number1(n,7,-6) for n in range(0, 21)] # _Zerinvary Lajos_, Apr 24 2009 %o A015564 (Magma) [n le 2 select n-1 else 7*Self(n-1) + 6*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 14 2012 %o A015564 (PARI) x='x+O('x^30); concat([0], Vec(x/(1-7*x-6*x^2))) \\ _G. C. Greubel_, Dec 30 2017 %K A015564 nonn,easy %O A015564 0,3 %A A015564 _Olivier Gérard_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE