# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a003923 Showing 1-1 of 1 %I A003923 #28 Jun 14 2024 22:31:09 %S A003923 1,6,720,1451520,47377612800,24815256521932800, %T A003923 208114637736580743168000,27930968965434591767112450048000, %U A003923 59980383884075203672726385914533642240000 %N A003923 Order of universal Chevalley group B_n (2) or symplectic group Sp(2n,2). %D A003923 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi. %D A003923 H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131. %D A003923 B. Runge, On Siegel modular forms I, J. Reine Angew. Math., 436 (1993), 57-85. %H A003923 T. D. Noe, Table of n, a(n) for n = 0..20 %F A003923 a(n) = B(2,n) where B(q,n) is defined in A003920. - _Sean A. Irvine_, Sep 22 2015 %p A003923 for m from 0 to 50 do N:=2^(m^2)*mul( 4^i-1, i=1..m); lprint(N); od: %t A003923 a[n_] := 2^(n^2)*Times@@(4^Range[n]-1); %t A003923 Table[a[n], {n, 0, 8}] (* _Jean-François Alcover_, Aug 18 2022 *) %o A003923 (Python) %o A003923 from math import prod %o A003923 def A003923(n): return (1 << n**2)*prod((1 << i)-1 for i in range(2,2*n+1,2)) # _Chai Wah Wu_, Jun 20 2022 %Y A003923 A bisection of A003053. %Y A003923 Cf. A003920. %K A003923 nonn,easy,nice %O A003923 0,2 %A A003923 _N. J. A. Sloane_ %E A003923 Edited by _N. J. A. Sloane_, Dec 30 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE