# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a003262 Showing 1-1 of 1 %I A003262 M2791 #46 Oct 16 2023 03:33:41 %S A003262 1,3,9,24,61,145,333,732,1565,3247,6583,13047,25379,48477,91159, %T A003262 168883,308736,557335,994638,1755909,3068960,5313318,9118049,15516710, %U A003262 26198568,43904123,73056724,120750102,198304922,323685343 %N A003262 Let y=f(x) satisfy F(x,y)=0. a(n) is the number of terms in the expansion of (d/dx)^n y in terms of the partial derivatives of F. %D A003262 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 175. %D A003262 L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251. %D A003262 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003262 Robert G. Wilson v, Table of n, a(n) for n = 1..500 %H A003262 L. Comtet, Letter to N. J. A. Sloane, Mar 1974. %H A003262 L. Comtet and M. Fiolet, Number of terms in an nth derivative, C. R. Acad. Sc. Paris, t. 278 (21 janvier 1974), Serie A- 249-251. (Annotated scanned copy) %H A003262 T. Wilde, Implicit higher derivatives and a formula of Comtet and Fiolet, arXiv:0805.2674 [math.CO], 2008. %F A003262 The generating function given by Comtet and Fiolet is incorrect. %F A003262 a(n) = coefficient of t^n*u^(n-1) in Product_{i,j>=0,(i,j)<>(0,1)} (1 - t^i*u^(i+j-1))^(-1). - Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008 %e A003262 (d/dx)^2 y = -F_xx/F_y + 2*F_x*F_xy/F_y^2 - F_x^2*F_yy/F_y^3, where F_x denotes partial derivative with respect to x, etc. This has three terms, thus a(2)=3. %t A003262 p[_, _] = 0; q[_, _] = 0; e = 30; For[m = 1, m <= e - 1, m++, For[d = 1, d <= m, d++, If[m == d*Floor[m/d], For[i = 0, i <= m/d + 1, i++, If[d*i <= e, q[m, i*d] = q[m, i*d] + 1/d]]]]]; For[j = 0, j <= e, j++, p[0, j] = 1]; For[n = 1, n <= e - 1, n++, For[s = 0, s <= n, s++, For[j = 0, j <= e, j++, For[i = 0, i <= j, i++, p[n, j] = p[n, j] + (1/n)*s*q[s, j - i]*p[n - s, i]]]]]; A003262 = Table[p[n - 1, n], {n, 1, e}](* _Jean-François Alcover_, after Tom Wilde *) %o A003262 (VBA) %o A003262 ' Tom Wilde, Jan 19 2008 %o A003262 Sub Calc_AofN_upto_E() %o A003262 E = 30 %o A003262 ReDim p(0 To E - 1, 0 To E) %o A003262 ReDim q(0 To E - 1, 0 To E) %o A003262 For m = 1 To E - 1 %o A003262 For d = 1 To m %o A003262 If m = d * Int(m / d) Then %o A003262 For i = 0 To m / d + 1 %o A003262 If d * i <= E Then q(m, i * d) = q(m, i * d) + 1 / d %o A003262 Next %o A003262 End If %o A003262 Next %o A003262 Next %o A003262 For j = 0 To E %o A003262 p(0, j) = 1 %o A003262 Next %o A003262 For n = 1 To E - 1 %o A003262 For s = 0 To n %o A003262 For j = 0 To E %o A003262 For i = 0 To j %o A003262 p(n, j) = p(n, j) + 1 / n * s * q(s, j - i) * p(n - s, i) %o A003262 Next %o A003262 Next %o A003262 Next %o A003262 Next %o A003262 For n = 1 To E %o A003262 Debug.Print p(n - 1, n) %o A003262 Next %o A003262 End Sub %Y A003262 Cf. A098504. %Y A003262 Cf. A172004 (generalization to bivariate implicit functions). %Y A003262 Cf. A162326 (analogous sequence for implicit divided differences). %Y A003262 Cf. A172003 (bivariate variant). %K A003262 nonn,nice,easy %O A003262 1,2 %A A003262 _N. J. A. Sloane_ %E A003262 More terms from Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE