# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a002985 Showing 1-1 of 1 %I A002985 M0783 #27 Oct 20 2023 22:04:55 %S A002985 1,1,1,2,3,6,11,20,36,64,108,179,292,464,727,1124,1714,2585,3866,5724, %T A002985 8418,12290,17830,25713,36898,52664,74837,105873,149178,209364,292793, %U A002985 407990,566668,784521,1082848,1490197,2045093,2798895,3820629,5202085 %N A002985 Number of trees in an n-node wheel. %C A002985 This is the number of nonequivalent spanning trees of the n-wheel graph up to isomorphism of the trees. %D A002985 F. Harary, P. E. O'Neil, R. C. Read and A. J. Schwenk, The number of trees in a wheel, in D. J. A. Welsh and D. R. Woodall, editors, Combinatorics. Institute of Mathematics and Its Applications. Southend-on-Sea, England, 1972, pp. 155-163. %D A002985 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A002985 Andrew Howroyd, Table of n, a(n) for n = 1..200 %H A002985 Andrew Howroyd, Derivation of formula. %H A002985 Eric Weisstein's World of Mathematics, Wheel Graph. %H A002985 Index entries for sequences related to trees %F A002985 a(n) = A003293(n-1) - A008804(n-3). - _Andrew Howroyd_, Oct 09 2017 %e A002985 All trees that span a wheel on 5 nodes are equivalent to one of the following: %e A002985 o o o %e A002985 | | \ / \ %e A002985 o--o--o o--o o o--o o %e A002985 | | / %e A002985 o o o %t A002985 terms = 40; %t A002985 A003293[n_] := SeriesCoefficient[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, terms}], {x, 0, n}]; %t A002985 A008804[n_] := SeriesCoefficient[1/((1-x)^4 (1+x)^2 (1+x^2)), {x, 0, n}]; %t A002985 a[n_] := A003293[n-1] - A008804[n-3]; %t A002985 Array[a, terms] (* _Jean-François Alcover_, Sep 02 2019 *) %o A002985 (PARI) \\ here b(n) is A003293 and d(n) is A008804. %o A002985 b(n)={polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n)} %o A002985 d(n)={(84+12*(-1)^n+6*I*((-I)^n-I^n)+(85+3*(-1)^n)*n+24*n^2+2*n^3)/96} %o A002985 a(n)=b(n-1)-d(n-3); \\ _Andrew Howroyd_, Oct 09 2017 %Y A002985 Cf. A003293, A004146, A008804. %K A002985 nonn %O A002985 1,4 %A A002985 _N. J. A. Sloane_ %E A002985 Terms a(32) and beyond from _Andrew Howroyd_, Oct 09 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE