# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a002072
Showing 1-1 of 1
%I A002072 M4560 N1942 #72 Oct 05 2020 10:56:20
%S A002072 1,8,80,4374,9800,123200,336140,11859210,11859210,177182720,
%T A002072 1611308699,3463199999,63927525375,421138799639,1109496723125,
%U A002072 1453579866024,20628591204480,31887350832896,31887350832896,119089041053696,2286831727304144,9591468737351909375,9591468737351909375,9591468737351909375,9591468737351909375,9591468737351909375,19316158377073923834000
%N A002072 a(n) = smallest number m such that for all k > m, either k or k+1 has a prime factor > prime(n).
%C A002072 An effective abc conjecture (c < rad(abc)^2) would imply that a(27) = a(28) = ... = a(32), and a(33) = 124225935845233319439173. - _Lucas A. Brown_, Sep 20 2020
%D A002072 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A002072 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A002072 E. F. Ecklund and R. B. Eggleton, Prime factors of consecutive integers, Amer. Math. Monthly, 79 (1972), 1082-1089.
%H A002072 D. H. Lehmer, On a problem of Størmer, Ill. J. Math., 8 (1964), 57-79.
%H A002072 Don Reble, Python program
%H A002072 Jim White, Results to P = 127
%H A002072 Wikipedia, Størmer's theorem
%F A002072 a(n) < 10^n/n except for n=4. (Conjectured, from experimental data.) - _M. F. Hasler_, Jan 16 2015
%e A002072 a(1) = 1 since for any number k greater than 1, it is impossible that k and k+1 both are powers of 2, so at least one of them has a prime factor > 2. (For m = 0 this would not hold for k = 1, k+1 = 2.)
%e A002072 a(2) = 8 since for any larger k, we cannot have k and k+1 both 3-smooth (cf. A003586).
%e A002072 31887350832897 = 3^9*7*37*41^2*61^2, 31887350832896 = 2^8*13*19*23*29^4*31, this number appears twice because there is no pair of numbers with max. factor = 67 that is larger than this number.
%t A002072 smoothNumbers[p_?PrimeQ, max_Integer] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand[Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]] }, {j, 1, k}]; Sort[Flatten[Table[Times @@ (pp^aa), Evaluate[ Sequence @@ iter]]]]]; a[n_] := Module[{sn = smoothNumbers[Prime[n], Ceiling[2000 + 10^n/n]], pos}, pos = Position[Differences[sn], 1][[-1, 1]]; sn[[pos]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* _Jean-François Alcover_, Nov 17 2016, after _M. F. Hasler_'s observation *)
%o A002072 (PARI) A002072(n,a=[1, 8, 80, 4374, 9800, 123200, 336140, 11859210, 11859210, 177182720, 1611308699, 3463199999, 63927525375, 421138799639, 1109496723125, 1453579866024])=a[n] \\ "practical" solution for use in other sequences, easily extended to more values. - _M. F. Hasler_, Jan 16 2015
%Y A002072 Cf. A002071, A003032, A003033, A122463, A145606, A175607.
%Y A002072 Equals A117581(n) - 1.
%K A002072 nonn,nice
%O A002072 1,2
%A A002072 _N. J. A. Sloane_
%E A002072 More terms from _Don Reble_, Jan 11 2005
%E A002072 a(18)-a(26) from _Fred Schneider_, Sep 09 2006
%E A002072 Corrected and extended by _Andrey V. Kulsha_, Aug 10 2011, according to Jim White's computations.
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE