# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a001292 Showing 1-1 of 1 %I A001292 #79 Jul 01 2022 22:04:15 %S A001292 1,12,21,123,231,312,1234,2341,3412,4123,12345,23451,34512,45123, %T A001292 51234,123456,234561,345612,456123,561234,612345,1234567,2345671, %U A001292 3456712,4567123,5671234,6712345,7123456 %N A001292 Concatenations of cyclic permutations of initial positive integers. %C A001292 Entries are sorted numerically, so after a(45) = 912345678 we have a(46) = 10123456789 instead of a(46) = 12345678910. - _Giovanni Resta_, Mar 21 2017 %C A001292 From _Marco Ripà_, Apr 21 2022: (Start) %C A001292 In 1996, Kenichiro Kashihara conjectured that there is no prime power of an integer (A093771) belonging to this sequence (disregarding the trivial case 1); a direct search from 12 to a(100128) has confirmed the conjecture up to 10^1035. There are no perfect powers among terms t which are permutations of 123_...(m - 1)_m for m == {2, 3, 5, 6} (mod 9). This is since 10 == 1 (mod 9) and also (1 + 0) == 1 (mod 9), so digit position has no effect. Hence, t == A134804(m) (mod 9). Now, if m is such that A134804(m) = {3, 6}, there is a lone factor of 3, which is not a perfect power (indeed). %C A001292 Therefore, any perfect power in this sequence is necessarily congruent modulo 9 to 0 or 1. %C A001292 (End) %H A001292 John Cerkan, Table of n, a(n) for n = 1..10000 %H A001292 Marco Ripà, On some open problems concerning perfect powers, ResearchGate (2022). %H A001292 Florentin Smarandache, Only Problems, Not Solutions!, Unsolved Problem #16, p. 18. %t A001292 Sort@ Flatten@ Table[ FromDigits[ Join @@ IntegerDigits /@ RotateLeft[Range[n], i - 1]], {n, 11}, {i, n}] (* _Giovanni Resta_, Mar 21 2017 *) %o A001292 (Python) %o A001292 from itertools import count, islice %o A001292 def A001292gen(): %o A001292 s = [] %o A001292 for i in count(1): %o A001292 s.append(str(i)) %o A001292 yield from sorted(int("".join(s[j:]+s[:j])) for j in range(i)) %o A001292 print(list(islice(A001292gen(), 46))) # _Michael S. Branicky_, Jul 01 2022 %Y A001292 Cf. A093771, A134804, A352991. %K A001292 nonn,base %O A001292 1,2 %A A001292 R. Muller # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE