# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a001113
Showing 1-1 of 1
%I A001113 M1727 N0684 #300 Oct 19 2024 21:54:51
%S A001113 2,7,1,8,2,8,1,8,2,8,4,5,9,0,4,5,2,3,5,3,6,0,2,8,7,4,7,1,3,5,2,6,6,2,
%T A001113 4,9,7,7,5,7,2,4,7,0,9,3,6,9,9,9,5,9,5,7,4,9,6,6,9,6,7,6,2,7,7,2,4,0,
%U A001113 7,6,6,3,0,3,5,3,5,4,7,5,9,4,5,7,1,3,8,2,1,7,8,5,2,5,1,6,6,4,2,7,4,2,7,4,6
%N A001113 Decimal expansion of e.
%C A001113 e is sometimes called Euler's number or Napier's constant.
%C A001113 Also, decimal expansion of sinh(1)+cosh(1). - _Mohammad K. Azarian_, Aug 15 2006
%C A001113 If m and n are any integers with n > 1, then |e - m/n| > 1/(S(n)+1)!, where S(n) = A002034(n) is the smallest number such that n divides S(n)!. - _Jonathan Sondow_, Sep 04 2006
%C A001113 Limit_{n->infinity} A000166(n)*e - A000142(n) = 0. - _Seiichi Kirikami_, Oct 12 2011
%C A001113 Euler's constant (also known as Euler-Mascheroni constant) is gamma = 0.57721... and Euler's number is e = 2.71828... . - _Mohammad K. Azarian_, Dec 29 2011
%C A001113 One of the many continued fraction expressions for e is 2+2/(2+3/(3+4/(4+5/(5+6/(6+ ... from Ramanujan (1887-1920). - _Robert G. Wilson v_, Jul 16 2012
%C A001113 e maximizes the value of x^(c/x) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. This explains why elements of A000792 are composed primarily of factors of 3, and where needed, some factors of 2. These are the two primes closest to e. - _Richard R. Forberg_, Oct 19 2014
%C A001113 There are two real solutions x to c^x = x^c when c, x > 0 and c != e, one of which is x = c, and only one real solution when c = e, where the solution is x = e. - _Richard R. Forberg_, Oct 22 2014
%C A001113 This is the expected value of the number of real numbers that are independently and uniformly chosen at random from the interval (0, 1) until their sum exceeds 1 (Bush, 1961). - _Amiram Eldar_, Jul 21 2020
%D A001113 S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.
%D A001113 E. Maor, e: The Story of a Number, Princeton Univ. Press, 1994.
%D A001113 Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 52.
%D A001113 G. W. Reitwiesner, An ENIAC determination of pi and e to more than 2000 decimal places. Math. Tables and Other Aids to Computation 4, (1950). 11-15.
%D A001113 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A001113 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A001113 David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 46.
%H A001113 N. J. A. Sloane, Table of 50000 digits of e labeled from 1 to 50000 [based on the ICON Project link below]
%H A001113 Mohammad K. Azarian, An Expansion of e, Problem # B-765, Fibonacci Quarterly, Vol. 32, No. 2, May 1994, p. 181. Solution appeared in Vol. 33, No. 4, Aug. 1995, p. 377.
%H A001113 Mohammad K. Azarian, Euler's Number Via Difference Equations, International Journal of Contemporary Mathematical Sciences, Vol. 7, 2012, No. 22, pp. 1095 - 1102.
%H A001113 L. E. Bush, The William Lowell Putnam Mathematical Competition, The American Mathematical Monthly, Vol. 68, No. 1 (1961), pp. 18-33, problem 3.
%H A001113 Ed Copeland and Brady Haran, A proof that e is irrational, Numberphile video (2021).
%H A001113 Dave's Math Tables, e
%H A001113 X. Gourdon, Plouffe's Inverter, e to 1.250 billion digits
%H A001113 X. Gourdon and P. Sebah, The constant e and its computation
%H A001113 ICON Project, e to 50000 places
%H A001113 Roger Mansuy, Un intrigant poème... mathématique, Images des Mathématiques, CNRS, 2023. In French.
%H A001113 R. Nemiroff and J. Bonnell, The first 5 million digits of the number e
%H A001113 Remco Niemeijer, Digits Of E, programmingpraxis
%H A001113 J. J. O'Connor & E. F. Robertson, The number e
%H A001113 Michael Penn, e is irrational, YouTube video, 2020.
%H A001113 Simon Plouffe, A million digits
%H A001113 G. W. Reitwiesner, An ENIAC determination of pi and e to more than 2000 decimal places, Pi, A Source book, pp 277-281, 2000.
%H A001113 E. Sandifer, How Euler Did It, Who proved e is irrational?, MAA Online (2006)
%H A001113 D. Shanks and J. W. Wrench, Jr., Calculation of e to 100,000 decimals, Math. Comp., 23 (1969), 679-680.
%H A001113 Jean-Louis Sigrist, Le premier million de décimales de e
%H A001113 J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly, 113 (2006), 637-641 (article) and 114 (2007), 659 (addendum).
%H A001113 J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
%H A001113 G. Villemin's Almanach of Numbers, Constant "e"
%H A001113 Eric Weisstein's World of Mathematics, e
%H A001113 Eric Weisstein's World of Mathematics, e Digits
%H A001113 Eric Weisstein's World of Mathematics, Factorial Sums
%H A001113 Eric Weisstein's World of Mathematics, Uniform Sum Distribution
%H A001113 Eric Weisstein's World of Mathematics, e Approximations
%H A001113 Wikipedia, E (mathematical constant)
%H A001113 Index entries for "core" sequences
%H A001113 Index entries for transcendental numbers
%F A001113 e = Sum_{k >= 0} 1/k! = lim_{x -> 0} (1+x)^(1/x).
%F A001113 e is the unique positive root of the equation Integral_{u = 1..x} du/u = 1.
%F A001113 exp(1) = ((16/31)*(1 + Sum_{n>=1} ((1/2)^n*((1/2)*n^3 + (1/2)*n + 1)/n!)))^2. _Robert Israel_ confirmed that the above formula is correct, saying: "In fact, Sum_{n=0..oo} n^j*t^n/n! = P_j(t)*exp(t) where P_0(t) = 1 and for j >= 1, P_j(t) = t (P_(j-1)'(t) + P_(j-1)(t)). Your sum is 1/2*P_3(1/2) + 1/2*P_1(1/2) + P_0(1/2)." - _Alexander R. Povolotsky_, Jan 04 2009
%F A001113 exp(1) = (1 + Sum_{n>=1} ((1+n+n^3)/n!))/7. - _Alexander R. Povolotsky_, Sep 14 2011
%F A001113 e = 1 + (2 + (3 + (4 + ...)/4)/3)/2 = 2 + (1 + (1 + (1 + ...)/4)/3)/2. - _Rok Cestnik_, Jan 19 2017
%F A001113 From _Peter Bala_, Nov 13 2019: (Start)
%F A001113 The series representation e = Sum_{k >= 0} 1/k! is the case n = 0 of the more general result e = n!*Sum_{k >= 0} 1/(k!*R(n,k)*R(n,k+1)), n = 0,2,3,4,..., where R(n,x) is the n-th row polynomial of A269953.
%F A001113 e = 2 + Sum_{n >= 0} (-1)^n*(n+2)!/(d(n+2)*d(n+3)), where d(n) = A000166(n).
%F A001113 e = Sum_{n >= 0} (x^2 + (n+2)*x + n)/(n!(n + x)*(n + 1 + x)), provided x is not zero or a negative integer. (End)
%F A001113 Equals lim_{n -> oo} (2*3*5*...*prime(n))^(1/prime(n)). - _Peter Luschny_, May 21 2020
%F A001113 e = 3 - Sum_{n >= 0} 1/((n+1)^2*(n+2)^2*n!). - _Peter Bala_, Jan 13 2022
%F A001113 e = lim_{n->oo} prime(n)*(1 - 1/n)^prime(n). - _Thomas Ordowski_, Jan 31 2023
%F A001113 e = 1+(1/1)*(1+(1/2)*(1+(1/3)*(1+(1/4)*(1+(1/5)*(1+(1/6)*(...)))))), equivalent to the first formula. - _David Ulgenes_, Dec 01 2023
%F A001113 From _Michal Paulovic_, Dec 12 2023: (Start)
%F A001113 Equals lim_{n->oo} (1 + 1/n)^n.
%F A001113 Equals x^(x^(x^...)) (infinite power tower) where x = e^(1/e) = A073229. (End)
%F A001113 Equals Product_{k>=1} (1 + 1/k) * (1 - 1/(k + 1)^2)^k. - _Antonio Graciá Llorente_, May 14 2024
%F A001113 Equals lim_{n->oo} Product_{k=1..n} (n^2 + k)/(n^2 - k) (see Finch). - _Stefano Spezia_, Oct 19 2024
%e A001113 2.71828182845904523536028747135266249775724709369995957496696762772407663...
%p A001113 Digits := 200: it := evalf((exp(1))/10, 200): for i from 1 to 200 do printf(`%d,`,floor(10*it)): it := 10*it-floor(10*it): od: # _James A. Sellers_, Feb 13 2001
%t A001113 RealDigits[E, 10, 120][[1]] (* _Harvey P. Dale_, Nov 14 2011 *)
%o A001113 (PARI) default(realprecision, 50080); x=exp(1); for (n=1, 50000, d=floor(x); x=(x-d)*10; write("b001113.txt", n, " ", d)); \\ _Harry J. Smith_, Apr 15 2009
%o A001113 (Haskell) -- See Niemeijer link.
%o A001113 a001113 n = a001113_list !! (n-1)
%o A001113 a001113_list = eStream (1, 0, 1)
%o A001113 [(n, a * d, d) | (n, d, a) <- map (\k -> (1, k, 1)) [1..]] where
%o A001113 eStream z xs'@(x:xs)
%o A001113 | lb /= approx z 2 = eStream (mult z x) xs
%o A001113 | otherwise = lb : eStream (mult (10, -10 * lb, 1) z) xs'
%o A001113 where lb = approx z 1
%o A001113 approx (a, b, c) n = div (a * n + b) c
%o A001113 mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
%o A001113 -- _Reinhard Zumkeller_, Jun 12 2013
%Y A001113 Cf. A002034, A003417 (continued fraction), A073229, A122214, A122215, A122216, A122217, A122416, A122417.
%Y A001113 Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), this sequence (b=10), A170873 (b=16). - _Jason Kimberley_, Dec 05 2012
%Y A001113 Powers e^k: A092578 (k = -7), A092577 (k = -6), A092560 (k = -5), A092553 - A092555 (k = -2 to -4), A068985 (k = -1), A072334 (k = 2), A091933 (k = 3), A092426 (k = 4), A092511 - A092513 (k = 5 to 7).
%K A001113 nonn,cons,nice,core
%O A001113 1,1
%A A001113 _N. J. A. Sloane_
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE