# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a001109 Showing 1-1 of 1 %I A001109 M4217 N1760 #612 Nov 05 2024 15:22:42 %S A001109 0,1,6,35,204,1189,6930,40391,235416,1372105,7997214,46611179, %T A001109 271669860,1583407981,9228778026,53789260175,313506783024, %U A001109 1827251437969,10650001844790,62072759630771,361786555939836,2108646576008245,12290092900109634,71631910824649559,417501372047787720 %N A001109 a(n)^2 is a triangular number: a(n) = 6*a(n-1) - a(n-2) with a(0)=0, a(1)=1. %C A001109 8*a(n)^2 + 1 = 8*A001110(n) + 1 = A055792(n+1) is a perfect square. - _Gregory V. Richardson_, Oct 05 2002 %C A001109 For n >= 2, A001108(n) gives exactly the positive integers m such that 1,2,...,m has a perfect median. The sequence of associated perfect medians is the present sequence. Let a_1,...,a_m be an (ordered) sequence of real numbers, then a term a_k is a perfect median if Sum_{j=1..k-1} a_j = Sum_{j=k+1..m} a_j. See Puzzle 1 in MSRI Emissary, Fall 2005. - _Asher Auel_, Jan 12 2006 %C A001109 (a(n), b(n)) where b(n) = A082291(n) are the integer solutions of the equation 2*binomial(b,a) = binomial(b+2,a). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de); comment revised by _Michael Somos_, Apr 07 2003 %C A001109 This sequence gives the values of y in solutions of the Diophantine equation x^2 - 8y^2 = 1. It also gives the values of the product xy where (x,y) satisfies x^2 - 2y^2 = +-1, i.e., a(n) = A001333(n)*A000129(n). a(n) also gives the inradius r of primitive Pythagorean triangles having legs whose lengths are consecutive integers, with corresponding semiperimeter s = a(n+1) = {A001652(n) + A046090(n) + A001653(n)}/2 and area rs = A029549(n) = 6*A029546(n). - _Lekraj Beedassy_, Apr 23 2003 [edited by _Jon E. Schoenfield_, May 04 2014] %C A001109 n such that 8*n^2 = floor(sqrt(8)*n*ceiling(sqrt(8)*n)). - _Benoit Cloitre_, May 10 2003 %C A001109 For n > 0, ratios a(n+1)/a(n) may be obtained as convergents to continued fraction expansion of 3+sqrt(8): either successive convergents of [6;-6] or odd convergents of [5;1, 4]. - _Lekraj Beedassy_, Sep 09 2003 %C A001109 a(n+1) + A053141(n) = A001108(n+1). Generating floretion: - 2'i + 2'j - 'k + i' + j' - k' + 2'ii' - 'jj' - 2'kk' + 'ij' + 'ik' + 'ji' + 'jk' - 2'kj' + 2e ("jes" series). - _Creighton Dement_, Dec 16 2004 %C A001109 Kekulé numbers for certain benzenoids (see the Cyvin-Gutman reference). - _Emeric Deutsch_, Jun 19 2005 %C A001109 Number of D steps on the line y=x in all Delannoy paths of length n (a Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1)). Example: a(2)=6 because in the 13 (=A001850(2)) Delannoy paths of length 2, namely (DD), (D)NE, (D)EN, NE(D), NENE, NEEN, NDE, NNEE, EN(D), ENNE, ENEN, EDN and EENN, we have altogether six D steps on the line y=x (shown between parentheses). - _Emeric Deutsch_, Jul 07 2005 %C A001109 Define a T-circle to be a first-quadrant circle with integral radius that is tangent to the x- and y-axes. Such a circle has coordinates equal to its radius. Let C(0) be the T-circle with radius 1. Then for n > 0, define C(n) to be the smallest T-circle that does not intersect C(n-1). C(n) has radius a(n+1). Cf. A001653. - _Charlie Marion_, Sep 14 2005 %C A001109 Numbers such that there is an m with t(n+m)=2t(m), where t(n) are the triangular numbers A000217. For instance, t(20)=2*t(14)=210, so 6 is in the sequence. - _Floor van Lamoen_, Oct 13 2005 %C A001109 One half the bisection of the Pell numbers (A000129). - _Franklin T. Adams-Watters_, Jan 08 2006 %C A001109 Pell trapezoids: for n > 0, a(n) = (A000129(n-1)+A000129(n+1))*A000129(n)/2; see also A084158. - _Charlie Marion_, Apr 01 2006 %C A001109 Tested for 2 < p < 27: If and only if 2^p - 1 (the Mersenne number M(p)) is prime then M(p) divides a(2^(p-1)). - _Kenneth J Ramsey_, May 16 2006 %C A001109 If 2^p - 1 is prime then M(p) divides a(2^(p-1)-1). - _Kenneth J Ramsey_, Jun 08 2006; comment corrected by _Robert Israel_, Mar 18 2007 %C A001109 If 8*n+5 and 8*n+7 are twin primes then their product divides a(4*n+3). - _Kenneth J Ramsey_, Jun 08 2006 %C A001109 If p is an odd prime, then if p == 1 or 7 (mod 8), then a((p-1)/2) == 0 (mod p) and a((p+1)/2) == 1 (mod p); if p == 3 or 5 (mod 8), then a((p-1)/2) == 1 (mod p) and a((p+1)/2) == 0 (mod p). _Kenneth J Ramsey_'s comment about twin primes follows from this. - _Robert Israel_, Mar 18 2007 %C A001109 a(n)*(a(n+b) - a(b-2)) = (a(n+1)+1)*(a(n+b-1) - a(b-1)). This identity also applies to any series a(0) = 0 a(1) = 1 a(n) = b*a(n-1) - a(n-2). - _Kenneth J Ramsey_, Oct 17 2007 %C A001109 For n < 0, let a(n) = -a(-n). Then (a(n+j) + a(k+j)) * (a(n+b+k+j) - a(b-j-2)) = (a(n+j+1) + a(k+j+1)) * (a(n+b+k+j-1) - a(b-j-1)). - _Charlie Marion_, Mar 04 2011 %C A001109 Sequence gives y values of the Diophantine equation: 0+1+2+...+x = y^2. If (a,b) and (c,d) are two consecutive solutions of the Diophantine equation: 0+1+2+...+x = y^2 with a 1, b(n) = 6*b(n-1) - b(n-2), then %C A001109 for n > 0, b(n) = a(n)*k-a(n-1); e.g., %C A001109 for k=2, when b(n) = A038725(n), 2 = 1*2 - 0, 11 = 6*2 - 1, 64 = 35*2 - 6, 373 = 204*2 - 35; %C A001109 for k=3, when b(n) = A001541(n), 3 = 1*3 - 0, 17 = 6*3 - 1; 99 = 35*3 - 6; 577 = 204*3 - 35; %C A001109 for k=4, when b(n) = A038723(n), 4 = 1*4 - 0, 23 = 6*4 - 1; 134 = 35*4 - 6; 781 = 204*4 - 35; %C A001109 for k=5, when b(n) = A001653(n), 5 = 1*5 - 0, 29 = 6*5 - 1; 169 = 35*5 - 6; 985 = 204*5 - 35. %C A001109 See also A002315, A054488, A038761, A054489, A054490. %C A001109 - _Charlie Marion_, Dec 08 2010 %C A001109 See a _Wolfdieter Lang_ comment on A001653 on a sequence of (u,v) values for Pythagorean triples (x,y,z) with x=|u^2-v^2|, y=2*u*v and z=u^2+v^2, with u odd and v even, generated from (u(0)=1,v(0)=2), the triple (3,4,5), by a substitution rule given there. The present a(n) appears there as b(n). The corresponding generated triangles have catheti differing by one length unit. - _Wolfdieter Lang_, Mar 06 2012 %C A001109 a(n)*a(n+2k) + a(k)^2 and a(n)*a(n+2k+1) + a(k)*a(k+1) are triangular numbers. Generalizes description of sequence. - _Charlie Marion_, Dec 03 2012 %C A001109 a(n)*a(n+2k) + a(k)^2 is the triangular square A001110(n+k). a(n)*a(n+2k+1) + a(k)*a(k+1) is the triangular oblong A029549(n+k). - _Charlie Marion_, Dec 05 2012 %C A001109 From _Richard R. Forberg_, Aug 30 2013: (Start) %C A001109 The squares of a(n) are the result of applying triangular arithmetic to the squares, using A001333 as the "guide" on what integers to square, as follows: %C A001109 a(2n)^2 = A001333(2n)^2 * (A001333(2n)^2 - 1)/2; %C A001109 a(2n+1)^2 = A001333(2n+1)^2 * (A001333(2n+1)^2 + 1)/2. (End) %C A001109 For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,5}. - _Milan Janjic_, Jan 25 2015 %C A001109 Panda and Rout call these "balancing numbers" and note that the period of the sequence modulo a prime p is the same as that modulo p^2 when p = 13, 31, 1546463. But these are precisely the p in A238736 such that p^2 divides A000129(p - (2/p)), where (2/p) is a Jacobi symbol. In light of the above observation by _Franklin T. Adams-Watters_ that the present sequence is one half the bisection of the Pell numbers, i.e., a(n) = A000129(2*n)/2, it follows immediately that modulo a fixed prime p, or any power thereof, the period of a(n) is half that of A000129(n). - _John Blythe Dobson_, Mar 06 2015 %C A001109 The triangular number = square number identity Tri((T(n, 3) - 1)/2) = S(n-1, 6)^2 with Tri, T, and S given in A000217, A053120 and A049310, is the special case k = 1 of the k-family of identities Tri((T(n, 2*k+1) - 1)/2) = Tri(k)*S(n-1, 2*(2*k+1))^2, k >= 0, n >= 0, with S(-1, x) = 0. For k=2 see A108741(n) for S(n-1, 10)^2. This identity boils down to the identities S(n-1, 2*x)^2 = (T(2*n, x) - 1)/(2*(x^2-1)) and 2*T(n, x)^2 - 1 = T(2*n, x) with x = 2*k+1. - _Wolfdieter Lang_, Feb 01 2016 %C A001109 a(2)=6 is perfect. For n=2*k, k > 0, k not equal to 1, a(n) is a multiple of a(2) and since every multiple (beyond 1) of a perfect number is abundant, then a(n) is abundant. sigma(a(4)) = 504 > 408 = 2*a(4). For n=2*k+1, k > 0, a(n) mod 10 = A000012(n), so a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. So for n=2k+1, k > 0, a(n) is deficient. sigma(a(5)) = 1260 < 2378 = 2*a(5). - _Muniru A Asiru_, Apr 14 2016 %C A001109 Behera & Panda call these the balancing numbers, and A001541 are the balancers. - _Michel Marcus_, Nov 07 2017 %C A001109 In general, a second-order linear recurrence with constant coefficients having a signature of (c,d) will be duplicated by a third-order recurrence having a signature of (x,c^2-c*x+d,-d*x+c*d). The formulas of Olivares and Bouhamida in the formula section which have signatures of (7,-7,1) and (5,5,-1), respectively, are specific instances of this general rule for x = 7 and x = 5. - _Gary Detlefs_, Jan 29 2021 %C A001109 Note that 6 is the largest triangular number in the sequence, because it is proved that 8 and 9 are the largest perfect powers which are consecutive (Catalan's conjecture). 0 and 1 are also in the sequence because they are also perfect powers and 0*1/2 = 0^2 and 8*9/2 = (2*3)^2. - _Metin Sariyar_, Jul 15 2021 %D A001109 Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From _N. J. A. Sloane_, May 30 2012 %D A001109 A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, pp. 193, 197. %D A001109 D. M. Burton, The History of Mathematics, McGraw Hill, (1991), p. 213. %D A001109 L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 10. %D A001109 P. Franklin, E. F. Beckenbach, H. S. M Coxeter, N. H. McCoy, K. Menger, and J. L. Synge, Rings And Ideals, No 8, The Carus Mathematical Monographs, The Mathematical Association of America, (1967), pp. 144-146. %D A001109 A. Patra, G. K. Panda, and T. Khemaratchatakumthorn. "Exact divisibility by powers of the balancing and Lucas-balancing numbers." Fibonacci Quart., 59:1 (2021), 57-64; see B(n). %D A001109 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001109 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A001109 P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - _N. J. A. Sloane_, Mar 08 2022 %H A001109 Indranil Ghosh, Table of n, a(n) for n = 0..1304 (terms 0..200 from T. D. Noe) %H A001109 Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38. %H A001109 Irving Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193. %H A001109 Seyed Hassan Alavi, Ashraf Daneshkhah, and Cheryl E. Praeger, Symmetries of biplanes, arXiv:2004.04535 [math.GR], 2020. See v_n in Lemma 7.9 p. 21. %H A001109 Jean-Paul Allouche, Zeta-regularization of arithmetic sequences, EPJ Web of Conferences (2020) Vol. 244, 01008. %H A001109 Dario Alpern for Diophantine equation a^4+b^3=c^2. %H A001109 Kasper Andersen, Lisa Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9. %H A001109 Francesca Arici and Jens Kaad, Gysin sequences and SU(2)-symmetries of C*-algebras, arXiv:2012.11186 [math.OA], 2020. %H A001109 Muniru A. Asiru, All square chiliagonal numbers, International Journal of Mathematical Education in Science and Technology, Volume 47, 2016 - Issue 7. %H A001109 Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018. %H A001109 Jeremiah Bartz, Bruce Dearden, Joel Iiams, and Julia Peterson, Powers of Two as Sums of Two Balancing Numbers, Combinatorics, Graph Theory and Computing (SEICCGTC 2021) Springer Proc. Math. Stat., Vol 448, pp. 383-392. See p. 384. %H A001109 Raymond A. Beauregard and Vladimir A. Dobrushkin, Powers of a Class of Generating Functions, Mathematics Magazine, Volume 89, Number 5, December 2016, pp. 359-363. %H A001109 A. Behera and G. K. Panda, On the Square Roots of Triangular Numbers, Fib. Quart., 37 (1999), pp. 98-105. %H A001109 Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5. %H A001109 Elwyn Berlekamp and Joe P. Buhler, Puzzle Column, Emissary, MSRI Newsletter, Fall 2005. Problem 1, (6 MB). %H A001109 Kisan Bhoi and Prasanta Kumar Ray, On the Diophantine equation Bn1+Bn2=2^a1+2^a2+2^a3, arXiv:2212.06372 [math.NT], 2022. %H A001109 Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 12. %H A001109 Alexander Bogomolny, There exist triangular numbers that are also squares %H A001109 John C. Butcher, On Ramanujan, continued Fractions and an interesting number %H A001109 Paula Catarino, Helena Campos, and Paulo Vasco, On some identities for balancing and cobalancing numbers, Annales Mathematicae et Informaticae, 45 (2015) pp. 11-24. %H A001109 E. K. Çetinalp, N. Yilmaz, and Ö. Deveci, The balancing-like sequences in groups, Acta Univ. Apulensis Math. (2023) No. 73, 139-153. See p. 144. %H A001109 S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 301, 302, P_{13}). %H A001109 Mahadi Ddamulira, Repdigits as sums of three balancing numbers, Mathematica Slovaca, (2019) hal-02405969. %H A001109 Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607. %H A001109 D. B. Eperson, Triangular numbers, Math. Gaz., 47 (1963), 236-237. %H A001109 Leonhard Euler, De solutione problematum diophanteorum per numeros integros, Par. 19. %H A001109 Sergio Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234. %H A001109 Bernadette Faye, Florian Luca, and Pieter Moree, On the discriminator of Lucas sequences, arXiv:1708.03563 [math.NT], 2017. %H A001109 Morgan Fiebig, aBa Mbirika, and Jürgen Spilker, Period patterns, entry points, and orders in the Lucas sequences: theory and applications, arXiv:2408.14632 [math.NT], 2024. See p. 5. %H A001109 Rigoberto Flórez, Robinson A. Higuita, and Antara Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014). %H A001109 Aviezri S. Fraenkel, On the recurrence f(m+1)= b(m)*f(m)-f(m-1) and applications, Discrete Mathematics 224 (2000), pp. 273-279. %H A001109 Robert Frontczak, A Note on Hybrid Convolutions Involving Balancing and Lucas-Balancing Numbers, Applied Mathematical Sciences, Vol. 12, 2018, No. 25, 1201-1208. %H A001109 Robert Frontczak, Sums of Balancing and Lucas-Balancing Numbers with Binomial Coefficients, International Journal of Mathematical Analysis (2018) Vol. 12, No. 12, 585-594. %H A001109 Robert Frontczak, Powers of Balancing Polynomials and Some Consequences for Fibonacci Sums, International Journal of Mathematical Analysis (2019) Vol. 13, No. 3, 109-115. %H A001109 Robert Frontczak and Taras Goy, Additional close links between balancing and Lucas-balancing polynomials, arXiv:2007.14048 [math.NT], 2020. %H A001109 Robert Frontczak and Taras Goy, More Fibonacci-Bernoulli relations with and without balancing polynomials, arXiv:2007.14618 [math.NT], 2020. %H A001109 Robert Frontczak and Taras Goy, Lucas-Euler relations using balancing and Lucas-balancing polynomials, arXiv:2009.09409 [math.NT], 2020. %H A001109 Robert Frontczak and Kalika Prasad, Balancing polynomials, Fibonacci numbers and some new series for $\pi$, Mediterranean Journal of Mathematics (2023) Vol. 20, Article number: 207. %H A001109 Bill Gosper, The Triangular Squares, 2014. %H A001109 H. Harborth, Fermat-like binomial equations, Applications of Fibonacci numbers, Proc. 2nd Int. Conf., San Jose/Ca., August 1986, 1-5 (1988). %H A001109 Brian Hayes, Calculemus!, American Scientist, 96 (Sep-Oct 2008), 362-366. %H A001109 Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7. %H A001109 Michael A. Jones, Proof Without Words: The Square of a Balancing Number Is a Triangular Number, The College Mathematics Journal, Vol. 43, No. 3 (May 2012), p. 212. %H A001109 Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.4. %H A001109 Omar Khadir, Kalman Liptai, and Laszlo Szalay, On the Shifted Product of Binary Recurrences, J. Int. Seq. 13 (2010), 10.6.1. %H A001109 Tanya Khovanova, Recursive Sequences %H A001109 Phil Lafer, Discovering the square-triangular numbers, Fib. Quart., 9 (1971), 93-105. %H A001109 Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019. %H A001109 Kalman Liptai, Fibonacci Balancing Numbers, Fib. Quart. 42 (4) (2004) 330-340. %H A001109 Madras College, St Andrews, Square Triangular Numbers %H A001109 aBa Mbirika, Janeè Schrader, and Jürgen Spilker, Pell and associated Pell braid sequences as GCDs of sums of k consecutive Pell, balancing, and related numbers, arXiv:2301.05758 [math.NT], 2023. See also J. Int. Seq. (2023) Vol. 26, Art. 23.6.4. %H A001109 Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164. %H A001109 G. K. Panda, Sequence balancing and cobalancing numbers, Fib. Q., Vol. 45, No. 3 (2007), 265-271. See p. 266. %H A001109 G. K. Panda and S. S. Rout, Periodicity of Balancing Numbers, Acta Mathematica Hungarica 143 (2014), 274-286. %H A001109 G. K. Panda and Ravi Kumar Davala, Perfect Balancing Numbers, Fibonacci Quart. 53 (2015), no. 3, 261-264. %H A001109 Ashish Kumar Pandey and B. K. Sharma, On Inequalities Related to a Generalized Euler Totient Function and Lucas Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.8.6. %H A001109 Poo-Sung Park, Ramanujan's Continued Fraction for a Puzzle, College Mathematics Journal, 2005, 363-365. %H A001109 Michael Penn, Balancing Numbers, Youtube video, 2020. %H A001109 Robert Phillips, Polynomials of the form 1+4ke+4ke^2, 2008. %H A001109 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A001109 Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 %H A001109 B. Polster and M. Ross, Marching in squares, arXiv preprint arXiv:1503.04658 [math.HO], 2015. %H A001109 Kalika Prasad, Munesh Kumari, Ritanjali Mohanty, and Hrishikesh Mahato, Spinor Algebra of k-Balancing and k-Lucas-Balancing Numbers, Journal of Algebra and Its Applications (2024). %H A001109 Kalika Prasad, Munesh Kumari, and Jagmohan Tanti, Octonions and hyperbolic octonions with the k-balancing and k-Lucas balancing numbers, The Journal of Analysis, (2024), Vol. 32, No. 3, 1281-1296. %H A001109 Kalika Prasad, Munesh Kumari, and Jagmohan Tanti, Generalized k-balancing and k-Lucas balancing numbers and associated polynomials, Kyungpook Mathematical Journal (2023), Vol. 63, No. 4, 539-550. %H A001109 Kalika Prasad, Hrishikesh Mahato, and Munesh Kumari, Some properties of r-circulant matrices with k-balancing and k-Lucas balancing numbers, Boletín de la Sociedad Matemática Mexicana (2023), Vol. 29, No. 2, Article no. 44. %H A001109 Helmut Prodinger, How to sum powers of balancing numbers efficiently, arXiv:2008.03916 [math.NT], 2020. %H A001109 Rajesh Ram, Triangle Numbers that are Perfect Squares %H A001109 K. J. Ramsey, Relation of Mersenne Primes To Square Triangular Numbers [edited by K. J. Ramsey, May 14 2011] %H A001109 Kenneth Ramsay and Andras Erszegi, Relation of Square Triangular Numbers To Mersenne Primes, digest of 4 messages in Triangular_and_Fibonacci_Numbers Yahoo Group, May 15 - Jun 28, 2006. %H A001109 Kenneth Ramsey, Generalized Proof re Square Triangular Numbers %H A001109 Kenneth Ramsey, Generalized Proof re Square Triangular Numbers, digest of 2 messages in Triangular_and_Fibonacci_Numbers Yahoo group, May 27, 2005 - Oct 10, 2011. %H A001109 Salah E. Rihane, Bernadette Faye, Florian Luca, and Alain Togbe, An exponential Diophantine equation related to the difference between powers of two consecutive Balancing numbers, arXiv:1811.03015 [math.NT], 2018. %H A001109 A. Sandhya, Puzzle 4: A problem Srinivasa Ramanujan, the famous 20th century Indian Mathematician Solved %H A001109 Sci.math Newsgroup, Square numbers which are triangular %H A001109 Sci.math Newsgroup, Square numbers which are triangular [Cached copy] %H A001109 R. A. Sulanke, Moments, Narayana numbers and the cut and paste for lattice paths. %H A001109 R. A. Sulanke, Bijective recurrences concerning Schroeder paths, Electron. J. Combin. 5 (1998), Research Paper 47, 11 pp. %H A001109 Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18. %H A001109 Ahmet Tekcan, Merve Tayat, and Meltem E. Ozbek, The diophantine equation 8x^2-y^2+8x(1+t)+(2t+1)^2=0 and t-balancing numbers, ISRN Combinatorics, Volume 2014, Article ID 897834, 5 pages. %H A001109 Eric Weisstein's World of Mathematics, Binomial coefficient. %H A001109 Eric Weisstein's World of Mathematics, Square Triangular Number. %H A001109 Eric Weisstein's World of Mathematics, Triangular Number. %H A001109 Wikipedia, Triangular square number %H A001109 Rick Young, Relevant quotation from biography of Ramanujan %H A001109 Index entries for sequences related to Chebyshev polynomials. %H A001109 Index entries for two-way infinite sequences %H A001109 Index entries for linear recurrences with constant coefficients, signature (6,-1). %F A001109 G.f.: x / (1 - 6*x + x^2). - _Simon Plouffe_ in his 1992 dissertation. %F A001109 a(n) = S(n-1, 6) = U(n-1, 3) with U(n, x) Chebyshev's polynomials of the second kind. S(-1, x) := 0. Cf. triangle A049310 for S(n, x). %F A001109 a(n) = sqrt(A001110(n)). %F A001109 a(n) = A001542(n)/2. %F A001109 a(n) = sqrt((A001541(n)^2-1)/8) (cf. Richardson comment). %F A001109 a(n) = 3*a(n-1) + sqrt(8*a(n-1)^2+1). - _R. J. Mathar_, Oct 09 2000 %F A001109 a(n) = A000129(n)*A001333(n) = A000129(n)*(A000129(n)+A000129(n-1)) = ceiling(A001108(n)/sqrt(2)). - _Henry Bottomley_, Apr 19 2000 %F A001109 a(n) ~ (1/8)*sqrt(2)*(sqrt(2) + 1)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002 %F A001109 Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - _Gregory V. Richardson_, Oct 05 2002 %F A001109 a(n) = ((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n) / (4*sqrt(2)). - _Gregory V. Richardson_, Oct 13 2002. Corrected for offset 0, and rewritten. - _Wolfdieter Lang_, Feb 10 2015 %F A001109 a(2*n) = a(n)*A003499(n). 4*a(n) = A005319(n). - Mario Catalani (mario.catalani(AT)unito.it), Mar 21 2003 %F A001109 a(n) = floor((3+2*sqrt(2))^n/(4*sqrt(2))). - _Lekraj Beedassy_, Apr 23 2003 %F A001109 a(-n) = -a(n). - _Michael Somos_, Apr 07 2003 %F A001109 For n >= 1, a(n) = Sum_{k=0..n-1} A001653(k). - _Charlie Marion_, Jul 01 2003 %F A001109 For n > 0, 4*a(2*n) = A001653(n)^2 - A001653(n-1)^2. - _Charlie Marion_, Jul 16 2003 %F A001109 For n > 0, a(n) = Sum_{k = 0..n-1}((2*k+1)*A001652(n-1-k)) + A000217(n). - _Charlie Marion_, Jul 18 2003 %F A001109 a(2*n+1) = a(n+1)^2 - a(n)^2. - _Charlie Marion_, Jan 12 2004 %F A001109 a(k)*a(2*n+k) = a(n+k)^2 - a(n)^2; e.g., 204*7997214 = 40391^2 - 35^2. - _Charlie Marion_, Jan 15 2004 %F A001109 For j < n+1, a(k+j)*a(2*n+k-j) - Sum_{i = 0..j-1} a(2*n-(2*i+1)) = a(n+k)^2 - a(n)^2. - _Charlie Marion_, Jan 18 2004 %F A001109 From _Paul Barry_, Feb 06 2004: (Start) %F A001109 a(n) = A000129(2*n)/2; %F A001109 a(n) = ((1+sqrt(2))^(2*n) - (1-sqrt(2))^(2*n))*sqrt(2)/8; %F A001109 a(n) = Sum_{i=0..n} Sum_{j=0..n} A000129(i+j)*n!/(i!*j!*(n-i-j)!)/2. (End) %F A001109 E.g.f.: exp(3*x)*sinh(2*sqrt(2)*x)/(2*sqrt(2)). - _Paul Barry_, Apr 21 2004 %F A001109 A053141(n+1) + A055997(n+1) = A001541(n+1) + a(n+1). - _Creighton Dement_, Sep 16 2004 %F A001109 a(n) = Sum_{k=0..n} binomial(2*n, 2*k+1)*2^(k-1). - _Paul Barry_, Oct 01 2004 %F A001109 a(n) = A001653(n+1) - A038723(n); (a(n)) = chuseq[J]( 'ii' + 'jj' + .5'kk' + 'ij' - 'ji' + 2.5e ), apart from initial term. - _Creighton Dement_, Nov 19 2004, modified by _Davide Colazingari_, Jun 24 2016 %F A001109 a(n+1) = Sum_{k=0..n} A001850(k)*A001850(n-k), self convolution of central Delannoy numbers. - _Benoit Cloitre_, Sep 28 2005 %F A001109 a(n) = 7*(a(n-1) - a(n-2)) + a(n-3), a(1) = 0, a(2) = 1, a(3) = 6, n > 3. Also a(n) = ( (1 + sqrt(2) )^(2*n) - (1 - sqrt(2) )^(2*n) ) / (4*sqrt(2)). - _Antonio Alberto Olivares_, Oct 23 2003 %F A001109 a(n) = 5*(a(n-1) + a(n-2)) - a(n-3). - _Mohamed Bouhamida_, Sep 20 2006 %F A001109 Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(a(n-1),3), see second formula. - _Marcos Carreira_, Dec 27 2006 %F A001109 The perfect median m(n) can be expressed in terms of the Pell numbers P() = A000129() by m(n) = P(n + 2) * (P(n + 2) + (P(n + 1)) for n >= 0. - Winston A. Richards (ugu(AT)psu.edu), Jun 11 2007 %F A001109 For k = 0..n, a(2*n-k) - a(k) = 2*a(n-k)*A001541(n). Also, a(2*n+1-k) - a(k) = A002315(n-k)*A001653(n). - _Charlie Marion_, Jul 18 2007 %F A001109 [A001653(n), a(n)] = [1,4; 1,5]^n * [1,0]. - _Gary W. Adamson_, Mar 21 2008 %F A001109 a(n) = Sum_{k=0..n-1} 4^k*binomial(n+k,2*k+1). - _Paul Barry_, Apr 20 2009 %F A001109 a(n+1)^2 - 6*a(n+1)*a(n) + a(n)^2 = 1. - _Charlie Marion_, Dec 14 2010 %F A001109 a(n) = A002315(m)*A011900(n-m-1) + A001653(m)*A001652(n-m-1) - a(m) = A002315(m)*A053141(n-m-1) + A001653(m)*A046090(n-m-1) + a(m) with m < n; otherwise a(n) = A002315(m)*A053141(m-n) - A001653(m)*A011900(m-n) + a(m) = A002315(m)*A053141(m-n) - A001653(m)*A046090(m-n) - a(m) = (A002315(n) - A001653(n))/2. - _Kenneth J Ramsey_, Oct 12 2011 %F A001109 16*a(n)^2 + 1 = A056771(n). - _James R. Buddenhagen_, Dec 09 2011 %F A001109 A010054(A000290(a(n))) = 1. - _Reinhard Zumkeller_, Dec 17 2011 %F A001109 In general, a(n+k)^2 - A003499(k)*a(n+k)*a(n) + a(n)^2 = a(k)^2. - _Charlie Marion_, Jan 11 2012 %F A001109 a(n+1) = Sum_{k=0..n} A101950(n,k)*5^k. - _Philippe Deléham_, Feb 10 2012 %F A001109 PSUM transform of a(n+1) is A053142. PSUMSIGN transform of a(n+1) is A084158. BINOMIAL transform of a(n+1) is A164591. BINOMIAL transform of A086347 is a(n+1). BINOMIAL transform of A057087(n-1). - _Michael Somos_, May 11 2012 %F A001109 a(n+k) = A001541(k)*a(n) + sqrt(A132592(k)*a(n)^2 + a(k)^2). Generalizes formula dated Oct 09 2000. - _Charlie Marion_, Nov 27 2012 %F A001109 a(n) + a(n+2*k) = A003499(k)*a(n+k); a(n) + a(n+2*k+1) = A001653(k+1)*A002315(n+k). - _Charlie Marion_, Nov 29 2012 %F A001109 From _Peter Bala_, Dec 23 2012: (Start) %F A001109 Product_{n >= 1} (1 + 1/a(n)) = 1 + sqrt(2). %F A001109 Product_{n >= 2} (1 - 1/a(n)) = (1/3)*(1 + sqrt(2)). (End) %F A001109 G.f.: G(0)*x/(2-6*x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Aug 12 2013 %F A001109 G.f.: H(0)*x/2, where H(k) = 1 + 1/( 1 - x*(6-x)/(x*(6-x) + 1/H(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Feb 18 2014 %F A001109 a(n) = (a(n-1)^2 - a(n-3)^2)/a(n-2) + a(n-4) for n > 3. - _Patrick J. McNab_, Jul 24 2015 %F A001109 a(n-k)*a(n+k) + a(k)^2 = a(n)^2, a(n+k) + a(n-k) = A003499(k)*a(n), for n >= k >= 0. - _Alexander Samokrutov_, Sep 30 2015 %F A001109 Dirichlet g.f.: (PolyLog(s,3+2*sqrt(2)) - PolyLog(s,3-2*sqrt(2)))/(4*sqrt(2)). - _Ilya Gutkovskiy_, Jun 27 2016 %F A001109 4*a(n)^2 - 1 = A278310(n) for n > 0. - _Bruno Berselli_, Nov 24 2016 %F A001109 From _Klaus Purath_, Jan 18 2020: (Start) %F A001109 a(n) = (a(n-3) + a(n+3))/198. %F A001109 a(n) = Sum_{i=1..n} A001653(i), n>=1. %F A001109 a(n) = sinh( 2 * n * arccsch(1) ) / ( 2 * sqrt(2) ). - _Federico Provvedi_, Feb 01 2021 %F A001109 (End) %F A001109 a(n) = A002965(2*n)*A002965(2*n+1). - _Jon E. Schoenfield_, Jan 08 2022 %F A001109 a(n) = A002965(4*n)/2. - _Gerry Martens_, Jul 14 2023 %F A001109 a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1)*binomial(n+k, 2*k+1)*8^k. - _Peter Bala_, Jul 17 2023 %e A001109 G.f. = x + 6*x^2 + 35*x^3 + 204*x^4 + 1189*x^5 + 6930*x^6 + 40391*x^7 + ... %e A001109 6 is in the sequence since 6^2 = 36 is a triangular number: 36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8. - _Michael B. Porter_, Jul 02 2016 %p A001109 a[0]:=1: a[1]:=6: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n],n=0..26); # _Emeric Deutsch_ %p A001109 with (combinat):seq(fibonacci(2*n,2)/2, n=0..20); # _Zerinvary Lajos_, Apr 20 2008 %t A001109 Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{-1,6},#]}]&, {0,1}, 30]][[1]] (* _Harvey P. Dale_, Mar 23 2011 *) %t A001109 CoefficientList[Series[x/(1-6x+x^2),{x,0,30}],x] (* _Harvey P. Dale_, Mar 23 2011 *) %t A001109 LinearRecurrence[{6, -1}, {0, 1}, 50] (* _Vladimir Joseph Stephan Orlovsky_, Feb 12 2012 *) %t A001109 a[ n_]:= ChebyshevU[n-1, 3]; (* _Michael Somos_, Sep 02 2012 *) %t A001109 Table[Fibonacci[2n, 2]/2, {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 16 2016 *) %t A001109 TrigExpand@Table[Sinh[2 n ArcCsch[1]]/(2 Sqrt[2]), {n, 0, 10}] (* _Federico Provvedi_, Feb 01 2021 *) %o A001109 (PARI) {a(n) = imag((3 + quadgen(32))^n)}; /* _Michael Somos_, Apr 07 2003 */ %o A001109 (PARI) {a(n) = subst( poltchebi( abs(n+1)) - 3 * poltchebi( abs(n)), x, 3) / 8}; /* _Michael Somos_, Apr 07 2003 */ %o A001109 (PARI) {a(n) = polchebyshev( n-1, 2, 3)}; /* _Michael Somos_, Sep 02 2012 */ %o A001109 (PARI) is(n)=ispolygonal(n^2,3) \\ _Charles R Greathouse IV_, Nov 03 2016 %o A001109 (Sage) [lucas_number1(n,6,1) for n in range(27)] # _Zerinvary Lajos_, Jun 25 2008 %o A001109 (Sage) [chebyshev_U(n-1,3) for n in (0..20)] # _G. C. Greubel_, Dec 23 2019 %o A001109 (Haskell) %o A001109 a001109 n = a001109_list !! n :: Integer %o A001109 a001109_list = 0 : 1 : zipWith (-) %o A001109 (map (* 6) $ tail a001109_list) a001109_list %o A001109 -- _Reinhard Zumkeller_, Dec 17 2011 %o A001109 (Magma) [n le 2 select n-1 else 6*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jul 25 2015 %o A001109 (GAP) a:=[0,1];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # _Muniru A Asiru_, Dec 18 2018 %Y A001109 Cf. A000217, A000290, A001108, A001542, A001653, A001850, A002315, A002965, A278310. %Y A001109 Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), this sequence (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33). %Y A001109 Cf. A323182. %K A001109 nonn,easy,nice %O A001109 0,3 %A A001109 _N. J. A. Sloane_ %E A001109 Additional comments from _Wolfdieter Lang_, Feb 10 2000 %E A001109 Duplication of a formula removed by _Wolfdieter Lang_, Feb 10 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE