# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a008387 Showing 1-1 of 1 %I A008387 #40 Dec 13 2023 10:54:40 %S A008387 1,42,462,2562,9492,27174,65226,137886,264936,472626,794598,1272810, %T A008387 1958460,2912910,4208610,5930022,8174544,11053434,14692734,19234194, %U A008387 24836196,31674678,39944058,49858158,61651128,75578370,91917462,110969082 %N A008387 Coordination sequence for A_6 lattice. %H A008387 T. D. Noe, Table of n, a(n) for n = 0..1000 %H A008387 M. Baake and U. Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, 1997; Zeit. f. Kristallographie, 212 (1997), 253-256. %H A008387 R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142. %H A008387 J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf). %H A008387 M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. %H A008387 M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy] %H A008387 Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). %F A008387 a(n) = S(n,6) = 7*n*(11*n^4 + 35*n^2 + 14)/10, with S(n,m) = Sum_{k=0..m} binomial(m,k)^2 * binomial(n-k+m-1, m-1), for n > 0, and a(0) = 1. %F A008387 G.f.: (1+36*x+225*x^2+400*x^3+225*x^4+36*x^5+x^6)/(1-x)^6 = 1 + 42*x*(1+5*x+10*x^2+5*x^3+x^4)/(1-x)^6. - _Colin Barker_, Sep 26 2012 %F A008387 E.g.f.: 1 + (1/10)*x*(420 + 1890*x + 2170*x^2 + 770*x^3 + 77*x^4)*exp(x). - _G. C. Greubel_, May 26 2023 %p A008387 1, seq(7*n*(11*n^4+35*n^2+14)/10, n=1..40); %t A008387 LinearRecurrence[{6,-15,20,-15,6,-1}, {1,42,462,2562,9492,27174,65226}, 30] (* _Jean-François Alcover_, Jan 07 2019 *) %o A008387 (Magma) [n eq 0 select 1 else 7*n*(11*n^4+35*n^2+14)/10: n in [0..50]]; // _G. C. Greubel_, May 26 2023 %o A008387 (SageMath) [7*n*(11*n^4 +35*n^2 +14)/10 +int(n==0) for n in range(51)] # _G. C. Greubel_, May 26 2023 %Y A008387 Row 6 of A103881. %K A008387 nonn,easy %O A008387 0,2 %A A008387 _N. J. A. Sloane_ and _J. H. Conway_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE