# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a006880 Showing 1-1 of 1 %I A006880 M3608 #216 Sep 18 2024 15:46:37 %S A006880 0,4,25,168,1229,9592,78498,664579,5761455,50847534,455052511, %T A006880 4118054813,37607912018,346065536839,3204941750802,29844570422669, %U A006880 279238341033925,2623557157654233,24739954287740860,234057667276344607,2220819602560918840,21127269486018731928,201467286689315906290 %N A006880 Number of primes < 10^n. %C A006880 Number of primes with at most n digits; or pi(10^n). %C A006880 Partial sums of A006879. - _Lekraj Beedassy_, Jun 25 2004 %C A006880 Also omega( (10^n)! ), where omega(x): number of distinct prime divisors of x. - _Cino Hilliard_, Jul 04 2007 %C A006880 This sequence also gives a good approximation for the sum of primes less than 10^(n/2). This is evident from the fact that the number of primes less than 10^2n closely approximates the sum of primes less than 10^n. See link on Sum of Primes for the derivation. - _Cino Hilliard_, Jun 08 2008 %C A006880 It appears that (10^n)/log((n+3)!) is a lower bound close to a(n), see A025201. - _Eric Desbiaux_, Jul 20 2010, edited by _M. F. Hasler_, Dec 03 2018 %D A006880 Richard Crandall and Carl B. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; p. 11. %D A006880 Keith Devlin, Mathematics: The New Golden Age, new and revised edition. New York: Columbia University Press (1993): p. 6, Table 1. %D A006880 Marcus du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; p. 48. %D A006880 Calvin T. Long, Elementary Introduction to Number Theory. Prentice-Hall, Englewood Cliffs, NJ, 1987, p. 77. %D A006880 Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 179. %D A006880 H. Riesel, "Prime numbers and computer methods for factorization," Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, page 38. %D A006880 D. Shanks, Solved and Unsolved Problems in Number Theory. Chelsea, NY, 2nd edition, 1978, p. 15. %D A006880 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A006880 David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 455052511 at p. 190. %H A006880 David Baugh, Table of n, a(n) for n = 0..29 (terms n = 1..27 from Charles R Greathouse IV). %H A006880 Chris K. Caldwell, How Many Primes Are There? %H A006880 Chris K. Caldwell, Mark Deleglise's work %H A006880 Muhammed Hüsrev Cilasun, An Analytical Approach to Exponent-Restricted Multiple Counting Sequences, arXiv preprint arXiv:1412.3265 [math.NT], 2014. %H A006880 Muhammed Hüsrev Cilasun, Generalized Multiple Counting Jacobsthal Sequences of Fermat Pseudoprimes, Journal of Integer Sequences, Vol. 19, 2016, #16.2.3. %H A006880 Jens Franke, Thorsten Kleinjung, Jan Büthe, and Alexander Jost, A practical analytic method for calculating pi(x), Math. Comp. 86 (2017), 2889-2909. %H A006880 Xavier Gourdon, a(22) found by pi(x) project %H A006880 Xavier Gourdon and Pascal Sebah, The pi(x) project : results and current computations %H A006880 Andrew Granville and Greg Martin, Prime number races, Amer. Math. Monthly, 113 (No. 1, 2006), 1-33. %H A006880 Andrew Granville and Greg Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004. %H A006880 Cino Hilliard, Sum of primes [unusable link] %H A006880 Ronald K. Hoeflin, Titan Test %H A006880 D. S. Kluk and N. J. A. Sloane, Correspondence, 1979, [see p. 6 of the pdf]. %H A006880 Rishi Kumar, Kepler Sets of Second-Order Linear Recurrence Sequences Over Q_p, arXiv:2406.05890 [math.NT], 2024. See p. 7. %H A006880 J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing pi(x): The Meissel-Lehmer method, Math. Comp., 44 (1985), pp. 537-560. %H A006880 J. C. Lagarias and Andrew M. Odlyzko, Computing pi(x): An analytic method, J. Algorithms, 8 (1987), pp. 173-191. %H A006880 Pieter Moree, Izabela Petrykiewicz, and Alisa Sedunova, A computational history of prime numbers and Riemann zeros, arXiv:1810.05244 [math.NT], 2018. See Table 1 p. 6. %H A006880 Tomás Oliveira e Silva, Tables of values of pi(x) and of pi2(x) %H A006880 Tomás Oliveira e Silva, Computing pi(x): the combinatorial method, Revista do Detua, Vol. 4, N 6, March 2006. %H A006880 David J. Platt, Computing pi(x) analytically, arXiv:1203.5712 [math.NT], 2012-2013. %H A006880 Vladimir Pletser, Conjecture on the value of Pi(10^26), the number of primes less than 10^26, arXiv:1307.4444 [math.NT], 2013. %H A006880 Vladimir Pletser, Global Generalized Mersenne Numbers: Definition, Decomposition, and Generalized Theorems, Preprints.org, 2024. See p. 20. %H A006880 Douglas B. Staple, The combinatorial algorithm for computing pi(x), arXiv:1503.01839 [math.NT], 2015. %H A006880 M. R. Watkins, The distribution of prime numbers %H A006880 Eric Weisstein's World of Mathematics, Prime Counting Function %H A006880 Wikipedia, Prime number theorem %H A006880 Robert G. Wilson v, Letter to N. J. A. Sloane, Jan. 1989 %H A006880 Index entries for sequences related to numbers of primes in various ranges %F A006880 a(n) = A000720(10^n). - _M. F. Hasler_, Dec 03 2018 %t A006880 Table[PrimePi[10^n], {n, 0, 14}] (* _Jean-François Alcover_, Nov 08 2016, corrected Sep 29 2020, a(14) being the maximum computable with certain implementations *) %o A006880 (PARI) a(n)=primepi(10^n) \\ _Charles R Greathouse IV_, Nov 08 2011 %o A006880 (Haskell) a006880 = a000720 . (10 ^) -- _Reinhard Zumkeller_, Mar 17 2015 %Y A006880 Cf. A000720, A006879, A006988, A007053, A011557, A025201, A040014. %K A006880 nonn,hard,nice %O A006880 0,2 %A A006880 _N. J. A. Sloane_ and _Simon Plouffe_ %E A006880 Lehmer gave the incorrect value 455052512 for the 10th term. More terms May 1996. _Jud McCranie_ points out that the 11th term is not 4188054813 but rather 4118054813. %E A006880 a(22) from _Robert G. Wilson v_, Sep 04 2001 %E A006880 a(23) (see Gourdon and Sebah) has yet to be verified and the assumed error is +-1. - _Robert G. Wilson v_, Jul 10 2002 [The actual error was 14037804. - _N. J. A. Sloane_, Nov 28 2007] %E A006880 a(23) corrected by _N. J. A. Sloane_ from the web page of Tomás Oliveira e Silva, Nov 28 2007 %E A006880 a(25) from J. Buethe, J. Franke, A. Jost, T. Kleinjung, Jun 01 2013, who said: "We have calculated pi(10^25) = 176846309399143769411680 unconditionally, using an analytic method based on Weil's explicit formula". %E A006880 a(26) from _Douglas B. Staple_, Dec 02 2014 %E A006880 a(27) in the b-file from _David Baugh_ and Kim Walisch via _Charles R Greathouse IV_, Jun 01 2016 %E A006880 a(28) in the b-file from _David Baugh_ and Kim Walisch, Oct 26 2020 %E A006880 a(29) in the b-file from _David Baugh_ and Kim Walisch, Feb 28 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE