# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a006809
Showing 1-1 of 1
%I A006809 M2796 M2797 #26 Feb 10 2024 09:23:47
%S A006809 1,3,9,25,66,168,417,1014,2427,5737,13412,31088,71506,163378,371272,
%T A006809 839248,1889019,4235082,9459687,21067566,46769977,103574916,228808544,
%U A006809 504286803,1109344029,2435398781,5337497418,11678931098
%N A006809 Bond percolation series for hexagonal lattice.
%C A006809 The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
%C A006809 The first negative term occurs at index 89.
%D A006809 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A006809 I. Jensen, Table of n, a(n) for n = 0..90 (from link below)
%H A006809 J. Blease, Series expansions for the directed-bond percolation problem, J. Phys. C 10 (1977), 917-924.
%H A006809 J. W. Essam, A. J. Guttmann and K. De'Bell, On two-dimensional directed percolation, J. Phys. A 21 (1988), 3815-3832.
%H A006809 I. Jensen, More terms
%H A006809 Iwan Jensen, Anthony J. Guttmann, Series expansions of the percolation probability for directed square and honeycomb lattices, J. Phys. A 28 (1995), no. 17, 4813-4833.
%H A006809 G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
%Y A006809 Cf. A006803, A006736.
%K A006809 sign
%O A006809 0,2
%A A006809 _N. J. A. Sloane_, _Simon Plouffe_
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE