# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a005658
Showing 1-1 of 1
%I A005658 M0969 #46 Jun 07 2019 22:01:08
%S A005658 1,2,4,5,8,9,10,14,15,16,17,18,20,26,27,28,29,30,32,33,34,36,40,44,47,
%T A005658 50,51,52,53,54,56,57,58,60,62,63,64,66,68,72,80,83,86,87,88,89,92,93,
%U A005658 94,98,99,100,101,102,104,105,106,108,110,111,112,114,116,120,122,123
%N A005658 If n appears so do 2n, 3n+2, 6n+3.
%C A005658 David Klarner and coauthors studied several sequences of this type. Some of the references here apply generally to this class of sequences.
%D A005658 Guy, R. K., Klarner-Rado Sequences. Section E36 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 237, 1994.
%D A005658 J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010. See pp. 6, 280.
%D A005658 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A005658 R. J. Mathar, Table of n, a(n) for n = 1..15889
%H A005658 R. K. Guy, Letter to N. J. A. Sloane with attachment, 1982
%H A005658 R. K. Guy, Don't try to solve these problems, Amer. Math. Monthly, 90 (1983), 35-41.
%H A005658 Dean G. Hoffman and David A. Klarner, Sets of integers closed under affine operators-the closure of finite sets, Pacific J. Math. 78 (1978), no. 2, 337-344.
%H A005658 Dean G. Hoffman and David A. Klarner, Sets of integers closed under affine operators-the finite basis theorem, Pacific J. Math. 83 (1979), no. 1, 135-144.
%H A005658 David A. Klarner, m-Recognizability of sets closed under certain affine functions, Discrete Appl. Math. 21 (1988), no. 3, 207-214.
%H A005658 David A. Klarner, Karel Post, Some fascinating integer sequences, A collection of contributions in honour of Jack van Lint, Discrete Math. 106/107 (1992), 303-309.
%H A005658 David A. Klarner and R. Rado, Arithmetic properties of certain recursively defined sets, Pacific J. Math. 53 (1974), 445-463.
%H A005658 Eric Weisstein's World of Mathematics, Klarner-Rado Sequence.
%H A005658 Index entries for sequences related to 3x+1 (or Collatz) problem
%p A005658 ina:= proc(n) evalb(n=1) end:
%p A005658 a:= proc(n) option remember; local k, t;
%p A005658 if n=1 then 1
%p A005658 else for k from a(n-1)+1 while not
%p A005658 (irem(k, 2, 't')=0 and ina(t) or
%p A005658 irem(k, 3, 't')=2 and ina(t) or
%p A005658 irem(k, 6, 't')=3 and ina(t) )
%p A005658 do od: ina(k):= true; k
%p A005658 fi
%p A005658 end:
%p A005658 seq(a(n), n=1..80); # _Alois P. Heinz_, Mar 16 2011
%t A005658 s={1};Do[a=s[[n]];s=Union[s,{2a,3a+2,6a+3}],{n,1000}];s (* _Zak Seidov_, Mar 15 2011 *)
%t A005658 nxt[n_]:=Flatten[{#,2#,3#+2,6#+3}&/@n]; Take[Union[Nest[nxt,{1},5]],100] (* _Harvey P. Dale_, Feb 06 2015 *)
%o A005658 (C++)
%o A005658 #include
%o A005658 #include
%o A005658 #include
%o A005658 using namespace std ;
%o A005658 int main(int argc, char *argv[])
%o A005658 { const int anmax= 40000 ; set a ; a.insert(1) ; for(int i=0;i< anmax ;i++) { if( a.count(i) ) { if( 2*i<=anmax) a.insert(2*i) ; if( 3*i+2 <= anmax) a.insert(3*i+2) ; if( 6*i+3 <= anmax) a.insert(6*i+3) ; } } int n=1 ; for(int i=0; i < anmax; i++) { if( a.count(i) ) { cout << n << " " << i << endl ; n++ ; } } return 0 ; }
%o A005658 - _R. J. Mathar_, Aug 20 2006
%o A005658 (Haskell)
%o A005658 import Data.Set (Set, fromList, insert, deleteFindMin)
%o A005658 a005658 n = a005658_list !! (n-1)
%o A005658 a005658_list = klarner $ fromList [1,2] where
%o A005658 klarner :: Set Integer -> [Integer]
%o A005658 klarner s = m : (klarner $
%o A005658 insert (2*m) $ insert (3*m+2) $ insert (6*m+3) s')
%o A005658 where (m,s') = deleteFindMin s
%o A005658 -- _Reinhard Zumkeller_, Mar 14 2011
%o A005658 (PARI) is(n)=if(n<3,return(n>0)); my(k=n%6); if(k==3, return(is(n\6))); if(k==1, return(0)); if(k==5, return(is(n\3))); if(k!=2, return(is(n/2))); is(n\3) || is(n/2) \\ _Charles R Greathouse IV_, Sep 15 2015
%Y A005658 Cf. A002977, A185661.
%K A005658 nonn,easy,nice
%O A005658 1,2
%A A005658 _N. J. A. Sloane_
%E A005658 More terms from Larry Reeves (larryr(AT)acm.org), Oct 16 2000
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE