# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a004277 Showing 1-1 of 1 %I A004277 #70 Jun 25 2023 20:37:12 %S A004277 1,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46, %T A004277 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92, %U A004277 94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132 %N A004277 1 together with positive even numbers. %C A004277 Also number of non-attacking bishops on n X n board. - Koksal Karakus (karakusk(AT)hotmail.com), May 27 2002 %C A004277 Engel expansion of e^(1/2) (see A006784 for definition) [when offset by 1]. - _Henry Bottomley_, Dec 18 2000 %C A004277 Numbers n such that a 2n-group (i.e., a group of order 2n) has subgroup C_2. - _Lekraj Beedassy_, Oct 14 2004 %C A004277 Image of 1/(1-2x) under the mapping g(x)->g(x/(1+x^2)). - _Paul Barry_, Jan 16 2005 %C A004277 Position of n in A113322: A113322(a(n-1)) = n for n>0. - _Reinhard Zumkeller_, Oct 26 2005 %C A004277 Incrementally largest terms in the continued fraction for e. - Nick Hobson, Jan 11 2007 %C A004277 Conjecturally, the differences of two consecutive primes (without repetition). - _Juri-Stepan Gerasimov_, Nov 09 2009 %C A004277 Equals (1, 2, 2, 2, ...) convolved with (1, 0, 2, 0, 2, 0, 2, ...). - _Gary W. Adamson_, Mar 03 2010 %C A004277 a(n) is the number of 0-dimensional elements (vertices) in an n-cross polytope. - _Patrick J. McNab_, Jul 06 2015 %C A004277 Numbers k such that in the symmetric representation of sigma(k) there is no pair bars as its ends (Cf. A237593). - _Omar E. Pol_, Sep 28 2018 %C A004277 Also, the coordination sequence of the L-lattice (see A332419). - _Sean A. Irvine_, Jul 29 2020 %H A004277 E. Friedman, Math. Magic %H A004277 Eric Weisstein's World of Mathematics, Cross Polytope %H A004277 Index entries for sequences related to Engel expansions %H A004277 Index entries for linear recurrences with constant coefficients, signature (2, -1). %F A004277 G.f.: (1+x^2)/(1-x)^2. - _Paul Barry_, Feb 28 2003 %F A004277 Inverse binomial transform of Cullen numbers A002064. a(n)=2n+0^n. - _Paul Barry_, Jun 12 2003 %F A004277 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1)*(-1)^k*2^(n-2k). - _Paul Barry_, Jan 16 2005 %F A004277 Equals binomial transform of [1, 1, 1, -1, 1, -1, 1, ...]. - _Gary W. Adamson_, Jul 15 2008 %F A004277 E.g.f.: 1+x*sinh(x) (aerated sequence). - _Paul Barry_, Oct 11 2009 %F A004277 a(n) = 0^n + 2*n = A000007(n) + A005843(n). - _Reinhard Zumkeller_, Jan 11 2012 %t A004277 Join[{1}, Table[2*n, {n, 200}]] (* _Vladimir Joseph Stephan Orlovsky_, Jul 10 2011 *) %t A004277 Select[Range@ 105, PowerMod[#, #, # + 1] == 1 &] (* _Robert G. Wilson v_, Sep 26 2016 *) %o A004277 (Haskell) %o A004277 a004277 n = 2 * n - 1 + signum (1 - n) %o A004277 a004277_list = 1 : [2, 4 ..] -- _Reinhard Zumkeller_, Dec 19 2013 %o A004277 (Magma) [1] cat [2*n: n in [1..80]]; // _Vincenzo Librandi_, Jul 11 2015 %Y A004277 Cf. A004275, A008486, A030978, A097134. %Y A004277 INVERT transformation yields A098182 without A098182(0). - _R. J. Mathar_, Sep 11 2008 %K A004277 easy,nonn %O A004277 0,2 %A A004277 _N. J. A. Sloane_ %E A004277 Corrected by _Charles R Greathouse IV_, Mar 18 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE