Displaying 1-3 of 3 results found.
page
1
0, 1, 2, 2, 1, 3, 1, 3, 4, 1, 1, 4, 1, 1, 1, 4, 1, 5, 1, 1, 1, 1, 1, 5, 2, 1, 6, 1, 1, 1, 1, 5, 1, 1, 18, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 2, 1, 1, 1, 1, 7, 2, 1, 1, 1, 1, 1, 1, 1, 17, 6, 2, 1, 1, 1, 1, 1, 1, 7, 1, 1, 2, 1, 6, 1, 1, 1, 8, 1, 1, 17, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 1, 2
PROG
(PARI)
A113177(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2]*fibonacci(f[i, 1])));
A276085(n) = { my(f=factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
Numbers k such that A113177(k) and A276085(k) are both even, where A113177 and A276085 are fully additive with a(p) = Fibonacci(p) and a(p) = p#/p, respectively.
+10
6
1, 3, 4, 9, 12, 16, 25, 27, 35, 36, 48, 49, 55, 64, 65, 75, 77, 81, 85, 91, 95, 100, 105, 108, 115, 119, 121, 133, 140, 143, 144, 145, 147, 155, 161, 165, 169, 185, 187, 192, 195, 196, 203, 205, 209, 215, 217, 220, 221, 225, 231, 235, 243, 247, 253, 255, 256, 259, 260, 265, 273, 285, 287, 289, 295, 299, 300, 301, 305
COMMENTS
Numbers whose 2-adic valuation ( A007814) is even, and the number of the prime factors (with multiplicity, A001222) and the 3-adic valuation ( A007949) have the same parity.
A multiplicative semigroup: if m and n are in the sequence, then so is m*n.
a(n) = 1 if A113177(n) and A276085(n) are both even, otherwise 0, where A113177 and A276085 are fully additive with a(p) = Fibonacci(p) and a(p) = p#/p, respectively.
+10
5
1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1
COMMENTS
a(n) = 1 if the 2-adic valuation of n is even, and the number of its prime factors (with multiplicity, A001222) and its 3-adic valuation ( A007949) have the same parity, otherwise 0.
PROG
(PARI)
A113177(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2]*fibonacci(f[i, 1])));
A276085(n) = { my(f=factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
(PARI) A374113(n) = (!(valuation(n, 2)%2) && !((bigomega(n)-valuation(n, 3))%2));
CROSSREFS
Characteristic function of A374114, whose complement A374115 gives the indices of 0's.
Search completed in 0.003 seconds
|