[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a374115 -id:a374115
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = gcd(A113177(n), A276085(n)), where A113177 and A276085 are fully additive with a(p) = Fibonacci(p) and a(p) = p#/p, respectively.
+10
7
0, 1, 2, 2, 1, 3, 1, 3, 4, 1, 1, 4, 1, 1, 1, 4, 1, 5, 1, 1, 1, 1, 1, 5, 2, 1, 6, 1, 1, 1, 1, 5, 1, 1, 18, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 2, 1, 1, 1, 1, 7, 2, 1, 1, 1, 1, 1, 1, 1, 17, 6, 2, 1, 1, 1, 1, 1, 1, 7, 1, 1, 2, 1, 6, 1, 1, 1, 8, 1, 1, 17, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 1, 2
OFFSET
1,3
LINKS
PROG
(PARI)
A113177(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2]*fibonacci(f[i, 1])));
A276085(n) = { my(f=factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
A374112(n) = gcd(A113177(n), A276085(n));
CROSSREFS
Cf. A113177, A276085, A374113, A374114 (indices of even terms), A374115 (of odd terms).
Cf. also A374116.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 29 2024
STATUS
approved
Numbers k such that A113177(k) and A276085(k) are both even, where A113177 and A276085 are fully additive with a(p) = Fibonacci(p) and a(p) = p#/p, respectively.
+10
6
1, 3, 4, 9, 12, 16, 25, 27, 35, 36, 48, 49, 55, 64, 65, 75, 77, 81, 85, 91, 95, 100, 105, 108, 115, 119, 121, 133, 140, 143, 144, 145, 147, 155, 161, 165, 169, 185, 187, 192, 195, 196, 203, 205, 209, 215, 217, 220, 221, 225, 231, 235, 243, 247, 253, 255, 256, 259, 260, 265, 273, 285, 287, 289, 295, 299, 300, 301, 305
OFFSET
1,2
COMMENTS
Numbers whose 2-adic valuation (A007814) is even, and the number of the prime factors (with multiplicity, A001222) and the 3-adic valuation (A007949) have the same parity.
A multiplicative semigroup: if m and n are in the sequence, then so is m*n.
LINKS
PROG
(PARI) isA374114 = A374113;
CROSSREFS
Intersection of A003159 and A373586.
Indices of even terms in A374112.
Cf. A001222, A007814, A007949, A113177, A276085, A374113 (characteristic function), A374115 (complement).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 29 2024
STATUS
approved
a(n) = 1 if A113177(n) and A276085(n) are both even, otherwise 0, where A113177 and A276085 are fully additive with a(p) = Fibonacci(p) and a(p) = p#/p, respectively.
+10
5
1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1
OFFSET
1
COMMENTS
a(n) = 1 if the 2-adic valuation of n is even, and the number of its prime factors (with multiplicity, A001222) and its 3-adic valuation (A007949) have the same parity, otherwise 0.
FORMULA
a(n) = A035263(n) * A373585(n).
a(n) = A059841(A374112(n)).
PROG
(PARI)
A113177(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2]*fibonacci(f[i, 1])));
A276085(n) = { my(f=factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
A374113(n) = (!(A113177(n)%2) && !(A276085(n)%2));
(PARI) A374113(n) = (!(valuation(n, 2)%2) && !((bigomega(n)-valuation(n, 3))%2));
CROSSREFS
Characteristic function of A374114, whose complement A374115 gives the indices of 0's.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 29 2024
STATUS
approved

Search completed in 0.003 seconds