[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a360909 -id:a360909
     Sort: relevance | references | number | modified | created      Format: long | short | data
Multiplicative with a(p^e) = 3*e - 1.
+10
6
1, 2, 2, 5, 2, 4, 2, 8, 5, 4, 2, 10, 2, 4, 4, 11, 2, 10, 2, 10, 4, 4, 2, 16, 5, 4, 8, 10, 2, 8, 2, 14, 4, 4, 4, 25, 2, 4, 4, 16, 2, 8, 2, 10, 10, 4, 2, 22, 5, 10, 4, 10, 2, 16, 4, 16, 4, 4, 2, 20, 2, 4, 10, 17, 4, 8, 2, 10, 4, 8, 2, 40, 2, 4, 10, 10, 4, 8, 2
OFFSET
1,2
LINKS
FORMULA
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 2/p^(2*s)).
Let f(s) = Product_{primes p} (1 + 2/p^(2*s)), then Sum_{k=1..n} a(k) ~ n*(f(1)*(log(n) + 2*gamma - 1) + f'(1)), where f(1) = Product_{primes p} (1 + 2/p^2) = 2.1908700855532557963501937947188223715671192999357721091330157224657649571..., f'(1) = f(1) * Sum_{primes p} (-4*log(p)/(p^2 + 2)) = -3.559220569509264750413960031425742000438433285978558703470289340806139902... and gamma is the Euler-Mascheroni constant A001620.
MATHEMATICA
a[n_] := Times @@ ((3*Last[#] - 1) & /@ FactorInteger[n]); a[1] = 1; Array[a, 100] (* Amiram Eldar, Feb 25 2023 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1+2*X^2)/(1-X)^2)[n], ", "))
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Vaclav Kotesovec, Feb 25 2023
STATUS
approved
Multiplicative with a(p^e) = 3*e - 2.
+10
6
1, 1, 1, 4, 1, 1, 1, 7, 4, 1, 1, 4, 1, 1, 1, 10, 1, 4, 1, 4, 1, 1, 1, 7, 4, 1, 7, 4, 1, 1, 1, 13, 1, 1, 1, 16, 1, 1, 1, 7, 1, 1, 1, 4, 4, 1, 1, 10, 4, 4, 1, 4, 1, 7, 1, 7, 1, 1, 1, 4, 1, 1, 4, 16, 1, 1, 1, 4, 1, 1, 1, 28, 1, 1, 4, 4, 1, 1, 1, 10, 10, 1, 1, 4
OFFSET
1,4
LINKS
FORMULA
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 - 1/p^s + 3/p^(2*s)).
Dirichlet g.f.: zeta(s) * Product_{primes p} (1 + 3/(p^s*(p^s-1))).
Sum_{k=1..n} a(k) ~ c*n, where c = Product_{primes p} (1 + 3/(p*(p-1))) = 5.092999766083306437144607885642959667401184716827970969797879646796872425...
MATHEMATICA
a[n_] := Times @@ ((3*Last[#] - 2) & /@ FactorInteger[n]); a[1] = 1; Array[a, 100] (* Amiram Eldar, Feb 25 2023 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1-X+3*X^2)/(1-X)^2)[n], ", "))
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Vaclav Kotesovec, Feb 25 2023
STATUS
approved
Multiplicative with a(p^e) = e + 3.
+10
5
1, 4, 4, 5, 4, 16, 4, 6, 5, 16, 4, 20, 4, 16, 16, 7, 4, 20, 4, 20, 16, 16, 4, 24, 5, 16, 6, 20, 4, 64, 4, 8, 16, 16, 16, 25, 4, 16, 16, 24, 4, 64, 4, 20, 20, 16, 4, 28, 5, 20, 16, 20, 4, 24, 16, 24, 16, 16, 4, 80, 4, 16, 20, 9, 16, 64, 4, 20, 16, 64, 4, 30, 4, 16
OFFSET
1,2
LINKS
FORMULA
Dirichlet g.f.: Product_{primes p} (1 + (4*p^s - 3)/(p^s - 1)^2).
Dirichlet g.f.: zeta(s)^4 * Product_{primes p} (1 - 5/p^(2*s) + 6/p^(3*s) - 2/p^(4*s)).
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = A000005(A361264(n)).
a(n) = A074816(n)*A007426(n)/A007425(n). (End)
MATHEMATICA
g[p_, e_] := e+3; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1+2*X-2*X^2)/(1-X)^2)[n], ", "))
CROSSREFS
Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), this sequence (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e), A360996 (5*e).
KEYWORD
nonn,easy,mult
AUTHOR
Vaclav Kotesovec, Feb 28 2023
STATUS
approved
Multiplicative with a(p^e) = 5*e, p prime and e > 0.
+10
2
1, 5, 5, 10, 5, 25, 5, 15, 10, 25, 5, 50, 5, 25, 25, 20, 5, 50, 5, 50, 25, 25, 5, 75, 10, 25, 15, 50, 5, 125, 5, 25, 25, 25, 25, 100, 5, 25, 25, 75, 5, 125, 5, 50, 50, 25, 5, 100, 10, 50, 25, 50, 5, 75, 25, 75, 25, 25, 5, 250, 5, 25, 50, 30, 25, 125, 5, 50, 25, 125, 5, 150
OFFSET
1,2
FORMULA
Dirichlet g.f.: Product_{primes p} (1 + 5*p^s/(p^s - 1)^2).
a(n) = A005361(n) * A082476(n).
MATHEMATICA
g[p_, e_] := 5*e; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1+3*X+X^2)/(1-X)^2)[n], ", "))
CROSSREFS
Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), A360997 (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e).
Cf. A082476.
KEYWORD
nonn,mult
AUTHOR
Vaclav Kotesovec, Feb 28 2023
STATUS
approved

Search completed in 0.005 seconds