[go: up one dir, main page]

login
Search: a360688 -id:a360688
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers > 1 whose first differences of 0-prepended prime indices have integer median.
+10
20
2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 89
OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The 0-prepended prime indices of 1617 are {0,2,4,4,5}, with sorted differences {0,1,2,2}, with median 3/2, so 1617 is not in the sequence.
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[2, 100], IntegerQ[Median[Differences[Prepend[prix[#], 0]]]]&]
CROSSREFS
For mean instead of median we have A340610.
Positions of even terms in A360555.
The complement is A360557 (without 1).
These partitions are counted by A360688.
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.
A112798 lists prime indices, length A001222, sum A056239.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A359893 and A359901 count partitions by median, odd-length A359902.
A360614/A360615 = mean of first differences of 0-prepended prime indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 16 2023
STATUS
approved
Number of integer partitions of n with more adjacent equal parts than distinct parts.
+10
17
0, 0, 0, 1, 1, 1, 3, 4, 7, 10, 12, 18, 28, 36, 52, 68, 92, 119, 161, 204, 269, 355, 452, 571, 738, 921, 1167, 1457, 1829, 2270, 2834, 3483, 4314, 5300, 6502, 7932, 9665, 11735, 14263, 17227, 20807, 25042, 30137, 36099, 43264, 51646, 61608, 73291, 87146, 103296
OFFSET
0,7
COMMENTS
None of these partitions is strict.
Also the number of integer partitions of n which, after appending 0, have first differences of median 0.
EXAMPLE
The a(3) = 1 through a(9) = 10 partitions:
(111) (1111) (11111) (222) (22111) (2222) (333)
(21111) (31111) (22211) (22221)
(111111) (211111) (41111) (33111)
(1111111) (221111) (51111)
(311111) (222111)
(2111111) (411111)
(11111111) (2211111)
(3111111)
(21111111)
(111111111)
For example, the partition y = (4,4,3,1,1,1,1) has 0-appended differences (0,1,2,0,0,0,0), with median 0, so y is counted under a(15).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Length[#]>2*Length[Union[#]]&]], {n, 0, 30}]
CROSSREFS
The non-prepended version is A237363.
These partitions have ranks A360558.
For any integer median (not just 0) we have A360688.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median, odd-length A359902.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 20 2023
STATUS
approved
Numbers > 1 whose sorted first differences of 0-prepended prime indices have non-integer median.
+10
13
4, 10, 15, 22, 24, 25, 33, 34, 36, 40, 46, 51, 54, 55, 56, 62, 69, 77, 82, 85, 88, 93, 94, 100, 104, 115, 118, 119, 121, 123, 134, 135, 136, 141, 146, 152, 155, 161, 166, 177, 184, 187, 194, 196, 201, 205, 206, 217, 218, 219, 220, 221, 225, 232, 235, 240, 248
OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The 0-prepended prime indices of 1617 are {0,2,4,4,5}, with sorted differences {0,1,2,2}, with median 3/2, so 1617 is in the sequence.
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[2, 100], !IntegerQ[Median[Differences[Prepend[prix[#], 0]]]]&]
CROSSREFS
For mean instead of median complement we have A340610, counted by A168659.
For mean instead of median we have A360668, counted by A200727.
Positions of odd terms in A360555.
The complement is A360556 (without 1), counted by A360688.
These partitions are counted by A360691.
- For divisors (A063655) we have A139710, complement A139711.
- For prime indices (A360005) we have A359912, complement A359908.
- For distinct prime indices (A360457) we have A360551, complement A360550.
- For distinct prime factors (A360458) we have A100367, complement A360552.
- For prime factors (A360459) we have A072978, complement A359913.
- For prime multiplicities (A360460) we have A360554, complement A360553.
- For 0-prepended differences (A360555) we have A360557, complement A360556.
A112798 lists prime indices, length A001222, sum A056239.
A287352 lists 0-prepended first differences of prime indices.
A325347 counts partitions with integer median, complement A307683.
A355536 lists first differences of prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.
A360614/A360615 = mean of first differences of 0-prepended prime indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 17 2023
STATUS
approved
Numerator of the average distance between consecutive 0-prepended prime indices of n; a(1) = 0.
+10
11
0, 1, 2, 1, 3, 1, 4, 1, 1, 3, 5, 2, 6, 2, 3, 1, 7, 2, 8, 1, 2, 5, 9, 1, 3, 3, 2, 4, 10, 1, 11, 1, 5, 7, 2, 1, 12, 4, 3, 3, 13, 4, 14, 5, 1, 9, 15, 2, 2, 1, 7, 2, 16, 1, 5, 1, 4, 5, 17, 3, 18, 11, 4, 1, 3, 5, 19, 7, 9, 4, 20, 2, 21, 6, 1, 8, 5, 2, 22, 3, 1, 13, 23, 1, 7, 7, 5, 5, 24, 3, 3, 3, 11, 15, 4, 1, 25, 4, 5, 3
OFFSET
1,3
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
FORMULA
Numerator of A061395(n)/A001222(n).
a(1) = 0; and for n >= 1, a(n) = A061395(n) / A366785(n) = A061395(n) / gcd(A001222(n), A061395(n)). - Antti Karttunen, Oct 23 2023
EXAMPLE
The 0-prepended prime indices of 100 are {0,1,1,3,3}, with differences (1,0,2,0), with mean 3/4, so a(100) = 3.
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[If[n==1, 0, Numerator[Mean[Differences[Prepend[prix[n], 0]]]]], {n, 100}]
PROG
(PARI) A360614(n) = if(1==n, 0, my(u=primepi(vecmax(factor(n)[, 1]))); (u/gcd(u, bigomega(n)))); \\ Antti Karttunen, Oct 23 2023
CROSSREFS
Positions of 1's are A340609, a superset of A106529.
For twice median instead of mean we have A360555.
The denominator is A360615.
A112798 lists prime indices, length A001222, sum A056239, max A061395.
A124010 gives prime signature, mean A088529/A088530.
A316413 lists numbers with integer mean prime index, complement A348551.
A326567/A326568 gives mean of prime indices.
KEYWORD
nonn,frac
AUTHOR
Gus Wiseman, Feb 19 2023
EXTENSIONS
Data section extended up to a(100) by Antti Karttunen, Oct 23 2023
STATUS
approved
Number of integer partitions of n whose multiplicities have integer median.
+10
11
1, 2, 3, 4, 5, 9, 10, 16, 22, 34, 42, 65, 80, 115, 145, 195, 240, 324, 396, 519, 635, 814, 994, 1270, 1549, 1952, 2378, 2997, 3623, 4521, 5466, 6764, 8139, 10008, 12023, 14673, 17534, 21273, 25336, 30593, 36302, 43575, 51555, 61570, 72653, 86382, 101676
OFFSET
1,2
COMMENTS
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The a(1) = 1 through a(8) = 16 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (2111) (51) (61) (62)
(11111) (222) (421) (71)
(321) (2221) (431)
(2211) (3211) (521)
(3111) (4111) (2222)
(111111) (211111) (3221)
(1111111) (3311)
(4211)
(5111)
(32111)
(221111)
(311111)
(11111111)
For example, the partition y = (3,2,2,1) has multiplicities (1,2,1), and the multiset {1,1,2} has median 1, so y is counted under a(8).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], IntegerQ[Median[Length/@Split[#]]]&]], {n, 30}]
CROSSREFS
The case of an odd number of multiplicities is A090794.
For mean instead of median we have A360069, ranks A067340.
These partitions have ranks A360553.
The complement is counted by A360690, ranks A360554.
A058398 counts partitions by mean, see also A008284, A327482.
A124010 gives prime signature, sorted A118914, mean A088529/A088530.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 20 2023
STATUS
approved
Number of integer partitions of n whose distinct parts have integer median.
+10
9
1, 2, 2, 4, 3, 8, 7, 16, 17, 31, 35, 60, 67, 99, 121, 170, 200, 270, 328, 436, 522, 674, 828, 1061, 1292, 1626, 1983, 2507, 3035, 3772, 4582, 5661, 6801, 8358, 10059, 12231, 14627, 17702, 21069, 25423, 30147, 36100, 42725, 50936, 60081, 71388, 84007, 99408
OFFSET
1,2
COMMENTS
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The a(1) = 1 through a(8) = 16 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (331) (44)
(31) (11111) (42) (421) (53)
(1111) (51) (511) (62)
(222) (3211) (71)
(321) (31111) (422)
(3111) (1111111) (431)
(111111) (521)
(2222)
(3221)
(3311)
(4211)
(5111)
(32111)
(311111)
(11111111)
For example, the partition y = (7,4,2,1,1) has distinct parts {1,2,4,7} with median 3, so y is counted under a(15).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], IntegerQ[Median[Union[#]]]&]], {n, 30}]
CROSSREFS
For all parts: A325347, strict A359907, ranks A359908, complement A307683.
For mean instead of median: A360241, ranks A326621.
These partitions have ranks A360550, complement A360551.
For multiplicities instead of distinct parts: A360687.
The complement is counted by A360689.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A027193 counts odd-length partitions, strict A067659, ranks A026424.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A116608 counts partitions by number of distinct parts.
A359893 and A359901 count partitions by median, odd-length A359902.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 20 2023
STATUS
approved
Numbers for which the prime signature has the same median as the first differences of 0-prepended prime indices.
+10
4
1, 2, 6, 30, 42, 49, 60, 66, 70, 78, 84, 90, 102, 105, 114, 120, 126, 132, 138, 140, 150, 154, 156, 168, 174, 186, 198, 204, 210, 222, 228, 234, 246, 258, 264, 270, 276, 280, 282, 286, 294, 306, 308, 312, 315, 318, 330, 342, 348, 350, 354, 366, 372, 378, 385
OFFSET
1,2
COMMENTS
A number's (unordered) prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The terms together with their prime indices begin:
1: {}
2: {1}
6: {1,2}
30: {1,2,3}
42: {1,2,4}
49: {4,4}
60: {1,1,2,3}
66: {1,2,5}
70: {1,3,4}
78: {1,2,6}
84: {1,1,2,4}
90: {1,2,2,3}
For example, the prime indices of 2760 are {1,1,1,2,3,9}. The signature is (3,1,1,1), with median 1. The first differences of 0-prepended prime indices are (1,0,0,1,1,6), with median 1/2. So 2760 is not in the sequence.
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Median[Length/@Split[prix[#]]] == Median[Differences[Prepend[prix[#], 0]]]&]
CROSSREFS
For distinct prime indices instead of 0-prepended differences: A360453.
For mean instead of median we have A360680.
A112798 = prime indices, length A001222, sum A056239, mean A326567/A326568.
A124010 gives prime signature, sorted A118914, mean A088529/A088530.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
Multisets with integer median:
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 19 2023
STATUS
approved
Number of integer partitions of n of length > 2 whose second differences have median 0.
+10
3
0, 0, 0, 1, 1, 1, 5, 4, 10, 13, 18, 23, 44, 44, 72, 98, 132, 162, 241, 277, 394, 497, 643, 800, 1076, 1287, 1660, 2078, 2604, 3192, 4065, 4892, 6113, 7490, 9166, 11110, 13717, 16429, 20033, 24201, 29143, 34945, 42251, 50219, 60253, 71852, 85503, 101501, 120899
OFFSET
0,7
COMMENTS
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The a(3) = 1 through a(9) = 13 partitions:
(111) (1111) (11111) (222) (22111) (2222) (333)
(321) (31111) (3221) (432)
(2211) (211111) (3311) (531)
(21111) (1111111) (22211) (22221)
(111111) (32111) (33111)
(41111) (51111)
(221111) (222111)
(311111) (321111)
(2111111) (411111)
(11111111) (2211111)
(3111111)
(21111111)
(111111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Median[Differences[#, 2]]==0&]], {n, 0, 30}]
CROSSREFS
For first differences we have A237363.
For sum instead of median we have A360683.
For mean instead of median we have A360683 - A008619.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A325347 counts partitions with integer median, strict A359907.
A359893 and A359901 count partitions by median, odd-length A359902.
A360005 gives median of prime indices (times two).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 19 2023
STATUS
approved
Number of integer partitions of n with non-integer median of multiplicities.
+10
2
0, 0, 0, 1, 2, 2, 5, 6, 8, 8, 14, 12, 21, 20, 31, 36, 57, 61, 94, 108, 157, 188, 261, 305, 409, 484, 632, 721, 942, 1083, 1376, 1585, 2004, 2302, 2860, 3304, 4103, 4742, 5849, 6745, 8281, 9599, 11706, 13605, 16481, 19176, 23078, 26838, 32145, 37387, 44465
OFFSET
1,5
COMMENTS
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The a(1) = 0 through a(9) = 8 partitions:
. . . (211) (221) (411) (322) (332) (441)
(311) (21111) (331) (422) (522)
(511) (611) (711)
(22111) (22211) (22221)
(31111) (41111) (33111)
(2111111) (51111)
(2211111)
(3111111)
For example, the partition y = (3,2,2,1) has multiplicities (1,2,1), and the multiset {1,1,2} has median 1, so y is not counted under a(8).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], !IntegerQ[Median[Length/@Split[#]]]&]], {n, 30}]
CROSSREFS
These partitions have ranks A360554.
The complement is counted by A360687, ranks A360553.
A058398 counts partitions by mean, see also A008284, A327482.
A124010 gives prime signature, sorted A118914, mean A088529/A088530.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
A360069 = partitions with integer mean of multiplicities, ranks A067340.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 22 2023
STATUS
approved
Number of integer partitions of n with non-integer median of 0-prepended first differences.
+10
2
0, 1, 0, 1, 2, 4, 3, 4, 5, 10, 10, 15, 22, 26, 34, 42, 57, 63, 85, 105, 121, 149, 202, 230, 305, 355, 459, 544, 687, 778, 991, 1130, 1396, 1598, 1947, 2258, 2761, 3143, 3820, 4412, 5330, 6104, 7404, 8499, 10105, 11694, 13922, 15917, 18904, 21646, 25462, 29213
OFFSET
1,5
COMMENTS
All of these partitions have even length.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The a(1) = 0 through a(10) = 10 partitions:
. (11) . (31) (32) (33) (52) (53) (54) (55)
(2111) (51) (2221) (71) (72) (73)
(2211) (4111) (3311) (3222) (91)
(3111) (5111) (6111) (3322)
(321111) (3331)
(4411)
(5311)
(7111)
(322111)
(421111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], !IntegerQ[Median[Differences[Prepend[Reverse[#], 0]]]]&]], {n, 30}]
CROSSREFS
For median 0 we have A360254, ranks A360558.
These partitions have ranks A360557, complement A360556.
The complement is counted by A360688.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 22 2023
STATUS
approved

Search completed in 0.012 seconds