OFFSET
1,2
LINKS
A. Galambos and V. Reiner, Acyclic sets of linear orders via the Bruhat order, Social Choice and Welfare, 30 (No. 2, 2008), 245-264.
Bernard Monjardet, Acyclic domains of linear orders: a survey, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160. Available as a preprint halshs-00198635.
FORMULA
Monjardet quotes the following formula from Galambos and Reiner: if n mod 2 = 0 then a(n) = 2^(n-3)*(n+3)-binomial(n-2,n/2-1)*(n-3/2), otherwise a(n) = 2^(n-3)*(n+3)-binomial(n-1,(n-1)/2)*(n-1)/2. [Corrected by Jan Volec (janvolec(AT)jikos.cz), Oct 26 2009]
a(n) ~ n*2^(n-3). - Clayton Thomas, Aug 19 2019
PROG
(SageMath)
def a(n):
return (n+3)*2^(n-3) - (binomial(n-2, n/2-1)*(n-3/2) if is_even(n)
else binomial(n-1, (n-1)/2)*(n-1)/2)
print([a(n) for n in (1..20)]) # Andrey Zabolotskiy, Oct 20 2024
CROSSREFS
Cf. A369614.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane Feb 07 2009
EXTENSIONS
More terms added, using the formula, by Andrey Zabolotskiy, Oct 20 2024
STATUS
approved