Displaying 1-4 of 4 results found.
page
1
Expansion of (1/x) * Series_Reversion( x / (1+x+x^3)^2 ).
+10
5
1, 2, 5, 16, 60, 242, 1014, 4370, 19278, 86678, 395751, 1829742, 8549100, 40302810, 191469165, 915751966, 4405727502, 21307102900, 103526683797, 505118705078, 2473833623696, 12157124607612, 59929746189165, 296271556144028, 1468494529164194, 7296261411708962
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(2*n-k+2,n-3*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x+x^3)^2)/x)
(PARI) a(n, s=3, t=2, u=0) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^3)^2) ).
+10
4
1, 3, 12, 57, 301, 1700, 10045, 61303, 383335, 2443113, 15811317, 103627692, 686402602, 4587643765, 30900426417, 209539509967, 1429344492215, 9801262309209, 67523359213569, 467136798336153, 3243948604314619, 22604271635042853, 158001453530915361
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(3*n-k+3,n-3*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^3)^2))/x)
(PARI) a(n, s=3, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
Coefficient of x^n in the expansion of ( (1+x)^2 * (1+x+x^3)^2 )^n.
+10
3
1, 4, 28, 226, 1940, 17214, 155914, 1432106, 13289076, 124276528, 1169346298, 11057293526, 104986087178, 1000248093420, 9557756114130, 91559051752596, 879027678226452, 8455595252761536, 81476137225450096, 786286875175380088, 7598503022428758570
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,k) * binomial(4*n-k,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^3)^2) ). See A369485.
PROG
(PARI) a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));
Expansion of (1/x) * Series_Reversion( x * (1+x) / (1+x+x^3)^2 ).
+10
1
1, 1, 1, 3, 9, 21, 54, 161, 470, 1347, 4007, 12199, 37141, 113802, 352905, 1101969, 3455220, 10891968, 34515825, 109814395, 350616323, 1123368287, 3610647348, 11637410625, 37605280548, 121812321775, 395455199269, 1286446544052, 4192913001804, 13690359696969
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(n-k+1,n-3*k).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1+x)/(1+x+x^3)^2)/x)
(PARI) a(n, s=3, t=2, u=-1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
Search completed in 0.008 seconds
|