[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a369485 -id:a369485
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of (1/x) * Series_Reversion( x / (1+x+x^3)^2 ).
+10
5
1, 2, 5, 16, 60, 242, 1014, 4370, 19278, 86678, 395751, 1829742, 8549100, 40302810, 191469165, 915751966, 4405727502, 21307102900, 103526683797, 505118705078, 2473833623696, 12157124607612, 59929746189165, 296271556144028, 1468494529164194, 7296261411708962
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(2*n-k+2,n-3*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x+x^3)^2)/x)
(PARI) a(n, s=3, t=2, u=0) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
CROSSREFS
Cf. A071879.
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 23 2024
STATUS
approved
Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^3)^2) ).
+10
4
1, 3, 12, 57, 301, 1700, 10045, 61303, 383335, 2443113, 15811317, 103627692, 686402602, 4587643765, 30900426417, 209539509967, 1429344492215, 9801262309209, 67523359213569, 467136798336153, 3243948604314619, 22604271635042853, 158001453530915361
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(3*n-k+3,n-3*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^3)^2))/x)
(PARI) a(n, s=3, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 23 2024
STATUS
approved
Coefficient of x^n in the expansion of ( (1+x)^2 * (1+x+x^3)^2 )^n.
+10
3
1, 4, 28, 226, 1940, 17214, 155914, 1432106, 13289076, 124276528, 1169346298, 11057293526, 104986087178, 1000248093420, 9557756114130, 91559051752596, 879027678226452, 8455595252761536, 81476137225450096, 786286875175380088, 7598503022428758570
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,k) * binomial(4*n-k,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^3)^2) ). See A369485.
PROG
(PARI) a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));
CROSSREFS
Cf. A369485.
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 11 2024
STATUS
approved
Expansion of (1/x) * Series_Reversion( x * (1+x) / (1+x+x^3)^2 ).
+10
1
1, 1, 1, 3, 9, 21, 54, 161, 470, 1347, 4007, 12199, 37141, 113802, 352905, 1101969, 3455220, 10891968, 34515825, 109814395, 350616323, 1123368287, 3610647348, 11637410625, 37605280548, 121812321775, 395455199269, 1286446544052, 4192913001804, 13690359696969
OFFSET
0,4
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+2,k) * binomial(n-k+1,n-3*k).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1+x)/(1+x+x^3)^2)/x)
(PARI) a(n, s=3, t=2, u=-1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 29 2024
STATUS
approved

Search completed in 0.008 seconds