[go: up one dir, main page]

login
Search: a366719 -id:a366719
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of divisors of 12^n+1.
+10
14
2, 2, 4, 8, 4, 4, 8, 8, 8, 32, 12, 4, 16, 24, 16, 128, 4, 8, 32, 16, 64, 384, 64, 16, 64, 64, 32, 1024, 8, 8, 48, 8, 4, 512, 16, 32, 128, 16, 32, 1536, 16, 32, 64, 32, 16, 4096, 8, 32, 32, 32, 512, 512, 32, 32, 1024, 128, 512, 1536, 192, 64, 1024, 32, 64
OFFSET
0,1
LINKS
FORMULA
a(n) = sigma0(12^n+1) = A000005(A178248(n)).
EXAMPLE
a(4)=4 because 12^4+1 has divisors {1, 89, 233, 20737}.
MAPLE
a:=n->numtheory[tau](12^n+1):
seq(a(n), n=0..100);
PROG
(PARI) a(n) = numdiv(12^n+1);
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 17 2023
STATUS
approved
a(n) = phi(12^n+1), where phi is Euler's totient function (A000010).
+10
14
1, 12, 112, 1296, 20416, 229680, 2306304, 32916240, 400515072, 3863116800, 47825825600, 685853880624, 8732596764672, 97509650382144, 990242755633152, 11148606564480000, 184883057981234176, 2047145911595946000, 20281543142263603200, 294779525244632305920
OFFSET
0,2
LINKS
FORMULA
a(n) = A000010(A178248(n)). - Paul F. Marrero Romero, Oct 27 2023
MATHEMATICA
EulerPhi[12^Range[0, 19] + 1] (* Paul F. Marrero Romero, Oct 27 2023 *)
PROG
(PARI) {a(n) = eulerphi(12^n+1)}
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 17 2023
STATUS
approved
Sum of the divisors of 12^n+1.
+10
13
3, 14, 180, 2240, 21060, 267988, 3706920, 38773952, 459970056, 6692483840, 79425033660, 800162860756, 9101898907920, 117326869641600, 1596198064568400, 20655000929239040, 184885459808838660, 2390210102271311936, 33504016991491136160, 344201347103878781440
OFFSET
0,1
LINKS
FORMULA
a(n) = sigma(12^n+1) = A000203(A178248(n)).
EXAMPLE
a(4)=21060 because 12^4+1 has divisors {1, 89, 233, 20737}.
MAPLE
a:=n->numtheory[sigma](12^n+1):
seq(a(n), n=0..100);
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 17 2023
STATUS
approved
Smallest prime dividing 4^n + 1.
+10
8
2, 5, 17, 5, 257, 5, 17, 5, 65537, 5, 17, 5, 97, 5, 17, 5, 641, 5, 17, 5, 257, 5, 17, 5, 193, 5, 17, 5, 257, 5, 17, 5, 274177, 5, 17, 5, 97, 5, 17, 5, 65537, 5, 17, 5, 257, 5, 17, 5, 641, 5, 17, 5, 257, 5, 17, 5, 449, 5, 17, 5, 97, 5, 17, 5, 59649589127497217
OFFSET
0,1
LINKS
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 14 2023
STATUS
approved
Number of prime factors of 12^n + 1 (counted with multiplicity).
+10
8
1, 1, 2, 3, 2, 2, 3, 3, 3, 5, 4, 2, 4, 5, 4, 7, 2, 3, 5, 4, 6, 9, 6, 4, 6, 6, 5, 10, 3, 3, 6, 3, 2, 9, 4, 5, 7, 4, 5, 11, 4, 5, 6, 5, 4, 12, 3, 5, 5, 5, 10, 9, 5, 5, 10, 7, 9, 11, 8, 6, 10, 5, 6, 15, 5, 9, 11, 4, 5, 12, 10, 3, 10, 5, 8, 17, 5, 6, 9, 4, 6, 15
OFFSET
0,3
LINKS
FORMULA
a(n) = bigomega(12^n+1) = A001222(A178248(n)).
MATHEMATICA
PrimeOmega[12^Range[70]+1]
PROG
(PARI) a(n)=bigomega(12^n+1)
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 17 2023
STATUS
approved
Largest prime factor of 12^n+1.
+10
7
2, 13, 29, 19, 233, 19141, 20593, 13063, 260753, 1801, 85403261, 57154490053, 2227777, 222379, 13156924369, 35671, 1200913648289, 66900193189411, 122138321401, 905265296671, 67657441, 1885339, 68368660537, 49489630860836437, 592734049, 438472201
OFFSET
0,1
LINKS
FORMULA
a(n) = A006530(A178248(n)). - Paul F. Marrero Romero, Dec 07 2023
MATHEMATICA
Table[FactorInteger[12^n + 1][[-1, 1]], {n, 0, 20}]
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 17 2023
STATUS
approved
Smallest prime dividing 6^n + 1.
+10
6
2, 7, 37, 7, 1297, 7, 13, 7, 17, 7, 37, 7, 1297, 7, 37, 7, 353, 7, 13, 7, 41, 7, 37, 7, 17, 7, 37, 7, 281, 7, 13, 7, 2753, 7, 37, 7, 577, 7, 37, 7, 17, 7, 13, 7, 89, 7, 37, 7, 193, 7, 37, 7, 1297, 7, 13, 7, 17, 7, 37, 7, 41, 7, 37, 7, 4926056449, 7, 13, 7, 137
OFFSET
0,1
LINKS
FORMULA
a(n) = A020639(A062394(n)). - Paul F. Marrero Romero, Oct 17 2023
MATHEMATICA
Table[FactorInteger[6^n + 1][[1, 1]], {n, 0, 68}] (* Paul F. Marrero Romero, Oct 17 2023 *)
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 15 2023
STATUS
approved
Smallest prime dividing 8^n + 1.
+10
5
2, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 193, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 641, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 193, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5, 3, 769, 3, 5, 3, 17, 3, 5, 3, 97, 3, 5, 3, 17, 3, 5
OFFSET
0,1
COMMENTS
a(n) = 3 if n is odd. a(n) = 5 if n == 2 (mod 4). - Robert Israel, Nov 20 2023
LINKS
FORMULA
a(n) = A020639(A062395(n)). - Paul F. Marrero Romero, Oct 20 2023
a(n) = A002586(3*n) for n >= 1. - Robert Israel, Nov 20 2023
MAPLE
P1000:= mul(ithprime(i), i= 4..1000):
f:= proc(n) local t;
if n::odd then return 3 elif n mod 4 = 2 then return 5 fi;
t:= igcd(8^n+1, P1000);
if t <> 1 then min(numtheory:-factorset(t)) else min(numtheory:-factorset(8^n+1)) fi
end proc:
map(f, [$0..100]); # Robert Israel, Nov 20 2023
MATHEMATICA
Table[FactorInteger[8^n + 1][[1, 1]], {n, 0, 78}] (* Paul F. Marrero Romero, Oct 20 2023 *)
PROG
(Python)
from sympy import primefactors
def A366671(n): return min(primefactors((1<<3*n)+1)) # Chai Wah Wu, Oct 16 2023
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 15 2023
STATUS
approved
Smallest prime dividing 12^n - 1.
+10
5
11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5, 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5, 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5, 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5, 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5, 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11
OFFSET
1,1
COMMENTS
Periodic with period 12, repeat of 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5.
FORMULA
a(n) = A020639(A024140(n)). - Paul F. Marrero Romero, Oct 25 2023
MATHEMATICA
Table[FactorInteger[12^n - 1][[1, 1]], {n, 71}] (* Paul F. Marrero Romero, Oct 25 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 17 2023
STATUS
approved

Search completed in 0.007 seconds