[go: up one dir, main page]

login
Search: a366717 -id:a366717
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = phi(12^n-1), where phi is Euler's totient function (A000010).
+10
13
10, 120, 1560, 13440, 226200, 2021760, 32518360, 274391040, 4534807680, 51953616000, 646094232960, 4662793175040, 97266341877120, 1070382142166400, 13666309113600000, 109897747141754880, 2016918439151095000, 17518491733377024000, 290436363064202660760
OFFSET
1,1
LINKS
MATHEMATICA
EulerPhi[12^Range[30] - 1]
PROG
(PARI) {a(n) = eulerphi(12^n-1)}
CROSSREFS
phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), this sequence (k=12).
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 17 2023
STATUS
approved
Smallest prime dividing 12^n + 1.
+10
10
2, 13, 5, 7, 89, 13, 5, 13, 17, 7, 5, 13, 89, 13, 5, 7, 153953, 13, 5, 13, 41, 7, 5, 13, 17, 13, 5, 7, 89, 13, 5, 13, 769, 7, 5, 13, 89, 13, 5, 7, 17, 13, 5, 13, 89, 7, 5, 13, 7489, 13, 5, 7, 89, 13, 5, 13, 17, 7, 5, 13, 41, 13, 5, 7, 36097, 13, 5, 13, 89, 7
OFFSET
0,1
LINKS
FORMULA
a(n) = A020639(A178248(n)). - Paul F. Marrero Romero, Oct 25 2023
MATHEMATICA
Table[FactorInteger[12^n + 1][[1, 1]], {n, 0, 69}] (* Paul F. Marrero Romero, Oct 25 2023 *)
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 17 2023
STATUS
approved
Largest prime factor of 12^n+1.
+10
7
2, 13, 29, 19, 233, 19141, 20593, 13063, 260753, 1801, 85403261, 57154490053, 2227777, 222379, 13156924369, 35671, 1200913648289, 66900193189411, 122138321401, 905265296671, 67657441, 1885339, 68368660537, 49489630860836437, 592734049, 438472201
OFFSET
0,1
LINKS
FORMULA
a(n) = A006530(A178248(n)). - Paul F. Marrero Romero, Dec 07 2023
MATHEMATICA
Table[FactorInteger[12^n + 1][[-1, 1]], {n, 0, 20}]
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 17 2023
STATUS
approved
Largest prime factor of 12^n - 1.
+10
4
11, 13, 157, 29, 22621, 157, 4943, 233, 80749, 22621, 266981089, 20593, 20369233, 13063, 22621, 260753, 74876782031, 80749, 29043636306420266077, 85403261, 8177824843189, 57154490053, 321218438243, 2227777, 12629757106815551, 20369233, 86769286104133
OFFSET
1,1
LINKS
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
FORMULA
a(n) = A006530(A024140(n)).
MATHEMATICA
Table[FactorInteger[12^n - 1][[-1, 1]], {n, 40}]
PROG
(Magma) [Maximum(PrimeDivisors(12^n-1)): n in [1..40]];
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Oct 17 2023
STATUS
approved
a(n) = period length of the sequence A020639(n^k - 1), k >= 1.
+10
1
1, 1, 1, 1, 1, 2, 1, 1, 1, 12, 1, 10, 1, 1, 1, 60, 1, 10, 1, 1, 1, 18, 1, 2, 1, 1, 1, 660, 1, 66, 1, 1, 1, 1, 1, 10, 1, 1, 1, 4620, 1, 6, 1, 1, 1, 660, 1, 2, 1, 1, 1, 31878, 1, 2, 1, 1, 1, 197340, 1, 5742, 1, 1, 1, 1, 1, 52026, 1, 1, 1, 440220, 1, 28014, 1, 1, 1, 4, 1, 2610, 1, 1, 1, 28014, 1, 2, 1, 1, 1, 3693690, 1, 2, 1, 1, 1, 1, 1, 7590, 1, 1, 1, 1642460820
OFFSET
3,6
COMMENTS
For n = 2, the sequence A020639(n^k - 1) is not periodic (see A049479), but it is such for any n >= 3.
a(n) divides A058254(A000720(A020639(n-1))).
LINKS
FORMULA
For odd n >= 3, a(n) = 1.
EXAMPLE
a(8) = 2 is the period length of A010705.
a(12) = 12 is the period length of A366717.
PROG
(PARI) { a368811(n) = my(r=[], z); forprime(p=2, factor(n-1)[1, 1], if(n%p==0, next); z=znorder(Mod(n, p)); if(!#r || vecmin(apply(x->z%x, r)), r=concat(r, [z])) ); lcm(r); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Jan 06 2024
STATUS
approved

Search completed in 0.004 seconds