[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a366586 -id:a366586
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers whose unitary divisors have a mean unitary abundancy index that is larger than 2.
+0
2
223092870, 281291010, 300690390, 6469693230, 6915878970, 8254436190, 8720021310, 9146807670, 9592993410, 10407767370, 10485364890, 10555815270, 11125544430, 11532931410, 11797675890, 11823922110, 12095513430, 12328305990, 12598876290, 12929686770, 13162479330
OFFSET
1,1
COMMENTS
Numbers k such that A374783(k)/A374784(k) > 2.
The least odd term is A070826(43) = 5.154... * 10^74, and the least term that is coprime to 6 is Product_{k=3..219} prime(k) = 1.0459... * 10^571.
The least nonsquarefree (A013929) term is a(613) = 148802944290 = 2 * 3 * 5 * 7 * 11 * 13 * 17 *19 * 23^2 * 29.
All the terms are nonpowerful numbers (A052485). For powerful numbers (A001694) k, A374783/(k)/A374784(k) < Product_{p prime} (1 + 1/(2*p)) = 1.242534... (A366586).
LINKS
FORMULA
A001221(a(n)) >= 9.
EXAMPLE
223092870 is a term since A374783(223092870)/A374784(223092870) = 666225/330752 = 2.014... > 2.
MATHEMATICA
f[p_, e_] := 1 + 1/(2*p^e); r[1] = 1; r[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[4*10^8], s[#] > 2 &]
PROG
(PARI) is(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + 1/(2*f[i, 1]^f[i, 2])) > 2; }
CROSSREFS
Subsequence of A052485.
Similar sequences: A245214, A374788.
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 20 2024
STATUS
approved
Decimal expansion of the asymptotic mean of the ratio between the number of squarefree divisors and the number of cubefree divisors.
+0
1
8, 5, 6, 2, 0, 0, 5, 0, 7, 9, 3, 7, 4, 7, 7, 1, 4, 9, 3, 9, 7, 2, 8, 1, 0, 8, 9, 5, 9, 5, 1, 6, 0, 4, 0, 4, 9, 8, 8, 4, 9, 0, 3, 1, 5, 8, 4, 1, 3, 2, 7, 1, 3, 1, 8, 5, 9, 6, 9, 5, 5, 8, 0, 3, 4, 0, 3, 8, 6, 6, 0, 8, 9, 6, 0, 1, 1, 9, 5, 9, 2, 1, 0, 5, 5, 5, 3, 0, 9, 0, 7, 8, 0, 9, 2, 3, 1, 4, 3, 4, 9, 2, 7, 3, 9
OFFSET
0,1
COMMENTS
For a positive integer k the ratio between the number of squarefree divisors and the number of cubefree divisors is r(k) = A034444(k)/A073184(k).
r(k) <= 1 with equality if and only if k is squarefree (A005117).
The asymptotic second raw moment is <r(k)^2> = Product_{p prime} (1 - 5/(9*p^2)) = 0.76780883634140395932... and the asymptotic standard deviation is 0.29730736888962774256... .
FORMULA
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A034444(k)/A073184(k).
Equals Product_{p prime} (1 - 1/(3*p^2)).
In general, the asymptotic mean of the ratio between the number of k-free divisors and the number of (k-1)-free divisors, for k >= 3, is Product_{p prime} (1 - 1/(k*p^2)).
EXAMPLE
0.85620050793747714939728108959516040498849031584132...
MATHEMATICA
$MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{0, 1/3}, {0, -(2/3)}, m]; RealDigits[Exp[NSum[Indexed[c, n] * PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]]
PROG
(PARI) prodeulerrat(1 - 1/(3*p^2))
CROSSREFS
Similar constants: A307869, A308042, A308043, A358659, A361059, A361060, A361061, A361062, A366586 (mean of the inverse ratio).
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Oct 14 2023
STATUS
approved

Search completed in 0.008 seconds