[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a353674 -id:a353674
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 1 if n is an odd number with an even number of distinct prime factors, otherwise 0.
+10
6
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0
OFFSET
1
FORMULA
a(n) = A000035(n) * (1-A092248(n)).
a(n) = A000035(n) - A353673(n).
a(n) >= A353676(n).
EXAMPLE
n = 45 = 3^2 * 5 is an odd number with two distinct prime factors, therefore a(45) = 1.
n = 1155 = 3*5*7*11 is an odd number with four distinct prime factors, therefore a(1155) = 1.
MATHEMATICA
Table[If[OddQ[n]&&EvenQ[PrimeNu[n]], 1, 0], {n, 130}] (* Harvey P. Dale, Feb 07 2024 *)
PROG
(PARI) A353675(n) = ((n%2) && !(omega(n)%2));
CROSSREFS
Characteristic function of {1} UNION A098905.
After n=1 differs from A353676 for the next time at n=1155, where a(1155)=1, while A353676(1155)=0.
Cf. also A353557.
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 03 2022
STATUS
approved
a(n) = 1 if n is an even number with an even number of distinct prime factors, otherwise 0.
+10
4
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0
OFFSET
1
FORMULA
a(n) = [n is even] * [A001221(n) is even], where [ ] is the Iverson bracket.
a(n) = A059841(n) * (1-A092248(n)).
a(n) = A059841(n) - A353674(n).
PROG
(PARI) A353672(n) = (!(n%2) && !(omega(n)%2));
CROSSREFS
Characteristic function of A098902.
Cf. also A353555.
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 03 2022
STATUS
approved
a(n) = 1 if n is an odd number with an odd number of distinct prime factors, otherwise 0.
+10
4
0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = A000035(n) * A092248(n).
a(n) = A000035(n) - A353675(n).
a(n) = A092248(n) - A353674(n).
EXAMPLE
n = 9 = 3^2 is an odd number with an odd number of distinct prime factors, therefore a(9) = 1.
n = 105 = 3*5*7 is an odd number with an odd number of distinct prime factors, therefore a(105) = 1.
PROG
(PARI) A353673(n) = ((n%2) && (omega(n)%2));
CROSSREFS
Characteristic function of A098903.
Differs from A174275 for the first time at n=105, where a(105) = 1, while A174275(105) = 0.
Cf. also A353558.
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 03 2022
STATUS
approved

Search completed in 0.056 seconds