[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a357422 -id:a357422
     Sort: relevance | references | number | modified | created      Format: long | short | data
E.g.f. satisfies A(x) = -log(1 - x * exp(A(x))) * exp(A(x)).
+0
3
0, 1, 5, 53, 878, 19904, 573984, 20112770, 829953368, 39425517072, 2119169565120, 127163052628512, 8426599011632592, 611181716437826832, 48159349246147915944, 4096752391897622411880, 374189567290578072309504, 36525100459236757201316352
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (n+k)^(k-1) * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( exp(-x) * (1 - exp(-x * exp(-x))) ). - Seiichi Manyama, Sep 09 2024
PROG
(PARI) a(n) = sum(k=1, n, (n+k)^(k-1)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 25 2022
STATUS
approved
E.g.f. satisfies A(x) = -log(1 - x * exp(A(x))) * exp(2 * A(x)).
+0
3
0, 1, 7, 104, 2422, 77304, 3141108, 155155580, 9027723248, 604793361744, 45851401106880, 3880989671623008, 362790690552990720, 37120807927059003744, 4126551430278515989632, 495243629308215934662720, 63819561948443247132306432, 8789113187481077533462305024
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (n+2*k)^(k-1) * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( exp(-x) * (1 - exp(-x * exp(-2*x))) ). - Seiichi Manyama, Sep 09 2024
PROG
(PARI) a(n) = sum(k=1, n, (n+2*k)^(k-1)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 25 2022
STATUS
approved

Search completed in 0.003 seconds