[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a356648 -id:a356648
     Sort: relevance | references | number | modified | created      Format: long | short | data
Squares of the form k + reverse(k) for at least one k.
+10
1
4, 16, 121, 484, 625, 1089, 10201, 14641, 19881, 40804, 49284, 69696, 91809, 94249, 203401, 698896, 1002001, 1234321, 1490841, 1517824, 4008004, 4276624, 4460544, 4937284, 5313025, 6325225, 6895876, 6948496, 7706176, 9018009, 15665764, 15776784, 16120225
OFFSET
1,1
FORMULA
a(n) = A356648(n)^2. - Michel Marcus, Dec 25 2022
EXAMPLE
56 + reverse(56) = 56 + 65 = 121 = 11^2, so 121 is a term.
PROG
(Python)
from math import isqrt
def aupto(lim): return sorted(set(t for t in (k + int(str(k)[::-1]) for k in range(1, lim+1)) if t <= lim and isqrt(t)**2 == t))
print(aupto(10**7)) # Michael S. Branicky, Dec 25 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jon E. Schoenfield, Dec 04 2022
STATUS
approved
The number of n-digit numbers k such that k + digit reversal of k (A056964) is a square.
+10
1
3, 8, 19, 0, 169, 896, 1496, 3334, 21789, 79403, 239439, 651236, 1670022, 3015650, 27292097, 55608749, 234846164, 366081231, 2594727780, 6395506991
OFFSET
1,1
COMMENTS
Number of terms of A061230 which are n digits long.
EXAMPLE
a(1) = 3 because there are 3 single-digit numbers: 0, 2, 8 such that b + b = m^2, for example, 8 + 8 = 16 = 4^2;
a(2) = 8 because there are 8 two-digit numbers: 29, 38, 47, 56, 65, 74, 83, 92 such that bc + cb = m^2, for example, 29 + 92 = 121 = 11^2.
MATHEMATICA
a[n_]:=Length[Select[Table[k, {k, 10^(n-1), 10^n-1}], IntegerQ[Sqrt[#+FromDigits[Reverse[IntegerDigits[#]]]]]&]]; Array[a, 10] (* Stefano Spezia, Dec 09 2022 *)
PROG
(Python)
from math import isqrt
def s(n): return isqrt(n)**2 == n
def c(n): return s(n + int(str(n)[::-1]))
def a(n): return 3 if n == 1 else sum(1 for k in range(10**(n-1), 10**n) if c(k))
print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Dec 08 2022
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Nicolay Avilov, Dec 08 2022
EXTENSIONS
a(9)-a(10) from Michael S. Branicky, Dec 08 2022
a(11)-a(20) from Talmon Silver, Dec 25 2022
STATUS
approved

Search completed in 0.008 seconds