[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a355893 -id:a355893
     Sort: relevance | references | number | modified | created      Format: long | short | data
The Two-Up sequence: a(n) is the least positive number not already used that is coprime to the previous floor(n/2) terms.
+10
39
1, 2, 3, 5, 4, 7, 9, 11, 13, 17, 8, 19, 23, 25, 21, 29, 31, 37, 41, 43, 47, 53, 16, 59, 61, 67, 71, 73, 55, 79, 27, 49, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 26, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 85, 121, 223, 227, 57, 229
OFFSET
1,2
COMMENTS
a(n) is coprime to the next n terms. - David Wasserman, Oct 24 2005
All values up to a(1000000) are either prime powers or semiprimes; this suggests the sequence is unlikely to be a permutation of the integers.
It appears that a(n) is even iff n = 3*2^k-1 for some k (A083356). - N. J. A. Sloane, Nov 01 2014
The even terms in the present sequence are listed in A354255.
We have a(1) = 1 and a(2) = 2. At step k >= 2, the sequence is extended by adding two terms: a(2*k-1) = smallest unused number which is relatively prime to a(k), a(k+1), ..., a(2*k-2), and a(2*k) = smallest unused number which is relatively prime to a(k), a(k+1), ..., a(2*k-1). So at step k=2 we add a(3)=3, a(4)=5; at step k=3 we add a(5)=4, a(6)=7; and so on. - N. J. A. Sloane, May 21 2022
Comments from N. J. A. Sloane, May 23 2022: (Start)
Conjecture 1. A090252 is a subsequence of A354144 (prime powers and semiprimes).
Conjecture 2. The terms of A354144 that are missing from A090252 are 6, 10, 14, 15, 22, 33, 34, 35, 38, 39, 46, 51, 58, 62, 65, 69, 74, 77, 82, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 209, 213, 214, 215, 218, 219, 221, ...
But since there is no proof that any one of these numbers is really missing, this list cannot yet have an entry in the OEIS.
Let S_p = list of indices of terms in A090252 that are divisible by the prime p.
Conjecture 3. For a prime p, there are constants v_1, v_2, ..., v_K and c such that
S_p = { v_1, v_2, ..., v_k, lambda*2^i - 1, i >= c}.
For example, from Michael S. Branicky's 10000-term b-file, it appears that:
S_2 = { 3*2^k-1, k >= 0 } cf. A083329
S_3 = { 2^k-1, k >= 2 } cf. A000225
S_5 = { 4 then 15*2^k-1 k >= 0 } cf. A196305
S_7 = { 6, 15, then 33*2^k-1, k >= 0 }
S_11 = { 8, 29, then 61*2^k-1, k >= 0 }
S_13 = { 9, 47, 97*2^n-1, n >= 0 }
S_17 = { 10, 59, 121*2^n-1, n >= 0 }
S_19 = { 12, 63, 129*2^n-1, n >= 0 }
S_23 = { 13, 65, 133*2^n-1, n >= 0 }
S_29 = { 16, 121, 245*2^n-1, n >= 0 }
S_31 = { 17, 131, 265*2^n-1, n >= 0 }
The initial primes p and the corresponding values of lambda are:
p: 2 3 5 7 11 13 17 19 23 29 31
lambda:..3...1..15..33...61...97..121..129..133..245..265
(This sequence of lambdas does not seem to have any simpler explanation, is not in the OEIS, and cannot be since the terms shown are all conjectural.)
Conjecture 2 is a consequence of Conjecture 3. For example, 6 does not appear in A090252, since the sets S_2 and S_3 are disjoint.
Also 10 does not appear, since S_2 and S_5 are disjoint.
In fact 2*p for 3 <= p <= 11 does not appear, but 26 = 2*13 does appear since S_2 and S_13 have 47 in common.
Assuming the numbers that appear to be missing (see Conjecture 2) really are missing, the numbers that take a record number of steps to appear are 1, 2, 3, 4, 7, 8, 16, 26, 32, 64, 128, 206, 256, 478, 512, 933, ..., and the indices where they appear are 1, 2, 3, 5, 6, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 8191, .... These two sequences are not yet in the OEIS, and cannot be added since the terms are all conjectural.
(End)
From N. J. A. Sloane, Jun 06 2022 (Start)
Theorem: (a) a(n) <= prime(n-1) for all n >= 2 (cf. A354154).
(b) A stronger upper bound is the following. Let c(n) = A354166(n) denote the number of nonprime terms among a(1) .. a(n). Note c(1)=1. Then a(n) <= prime(n-c(n)) for n <> 7 and 14.
It appears that a(n) = prime(n-c(n)) for almost all n. That is, this is the equation to the line in the graph that contains most of the terms.
For example, a(34886) = 408710 (see the b-file) = prime(34886 - A354166(34886)) = prime(34886 - 374) = prime(34512) = 408710.
Another example: Consider Russ Cox's table of the first N = 5764982 terms. We see that a(5764982) = 99999989 = prime(5761455) = prime(N - 3527) which agrees with c(N) = 3527 (from the first Russ Cox link).
(End)
If we consider the May 23 2022 comment, note the conjectured indices show near complete overlap with terms of A081026: 1, 2, 3, 5, 6, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 8191. - Bill McEachen, Aug 09 2024
LINKS
Russ Cox, Table of n, a(n) for n = 1..5764982, up to the first term that is greater than 10^8 [gzipped file]
Michael De Vlieger, Thomas Scheuerle, Rémy Sigrist, N. J. A. Sloane, and Walter Trump, The Binary Two-Up Sequence, arXiv:2209.04108 [math.CO], Sep 11 2022.
N. J. A. Sloane, Blog post about the Two-Up sequence, June 13 2022.
Hugo van der Sanden, Perl program to calculate this sequence and A249064 (requires Math::Pari)
Hugo van der Sanden, Faster Perl program on github, used to compute 10^9 terms. [Link changed by N. J. A. Sloane, Jun 19 2022]
Hugo van der Sanden, Table of nonprime entries in the first 10^9 terms of A090252 [See beginning of the file for description. The blog in the above link has comments from Hugo van der Sanden describing the algorithm used to generate this table.]
MATHEMATICA
nn = 120; c[_] = 0; a[1] = c[1] = 1; u = 2; Do[k = u; While[Nand[c[k] == 0, AllTrue[Array[a[i - #] &, Floor[i/2]], CoprimeQ[#, k] &]], k++]; Set[{a[i], c[k]}, {k, i}]; If[k == u, While[c[u] > 0, u++]], {i, 2, nn}]; Array[a, nn]] (* Michael De Vlieger, May 21 2022 *)
PROG
(Python)
from math import gcd, prod
from itertools import count, islice
def agen(): # generator of terms
alst = [1]; aset = {1}; yield 1
mink = 2
for n in count(2):
k, prodall = mink, prod(alst[n-n//2-1:n-1])
while k in aset or gcd(prodall, k) != 1: k += 1
alst.append(k); aset.add(k); yield k
while mink in aset: mink += 1
print(list(islice(agen(), 64))) # Michael S. Branicky, May 21 2022
(PARI) A090252_first(N, U=[0], L=List())=vector(N, i, for(k=U[1]+1, oo, setsearch(U, k) && next; foreach(L, m, gcd(k, m)>1 && next(2)); bitand(i, 1) || listpop(L, 1); listput(L, k); if( k>U[1]+1, U=setunion(U, [k]), U[1]++; while(#U>1 && U[2]==U[1]+1, U=U[^1])); break); L[#L]) \\ M. F. Hasler, Jun 14 2022
CROSSREFS
See A247665 for the case when the numbers are required to be at least 2. A353730 is another version.
For a squarefree analog, see A354790, A354791, A354792.
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Nov 27 2003
EXTENSIONS
More terms from David Wasserman, Oct 24 2005
STATUS
approved
a(n) = binary expansion of A354169(n).
+10
3
0, 1, 10, 100, 1000, 11, 10000, 100000, 1000000, 1100, 10000000, 100000000, 1000000000, 10001, 10000000000, 100010, 100000000000, 1000000000000, 10000000000000, 1000100, 100000000000000, 10001000, 1000000000000000, 10000000000000000, 100000000000000000, 1100000000, 1000000000000000000, 10000000000000000000, 100000000000000000000
OFFSET
0,3
LINKS
EXAMPLE
The terms, right-justified, for comparison with A355893.
...................................0
...................................1
..................................10
.................................100
................................1000
..................................11
...............................10000
..............................100000
.............................1000000
................................1100
............................10000000
...........................100000000
..........................1000000000
...............................10001
.........................10000000000
..............................100010
........................100000000000
.......................1000000000000
......................10000000000000
.............................1000100
.....................100000000000000
............................10001000
....................1000000000000000
...................10000000000000000
..................100000000000000000
..........................1100000000
.................1000000000000000000
................10000000000000000000
...............100000000000000000000
.........................10000000001
..............1000000000000000000000
...............................10010
.............10000000000000000000000
........................100000100000
............100000000000000000000000
...........1000000000000000000000000
..........10000000000000000000000000
......................11000000000000
.........100000000000000000000000000
........1000000000000000000000000000
.......10000000000000000000000000000
.....................100000000000100
......100000000000000000000000000000
.............................1001000
.....1000000000000000000000000000000
....................1000000010000000
....10000000000000000000000000000000
...100000000000000000000000000000000
..1000000000000000000000000000000000
..................110000000000000000
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 23 2022
STATUS
approved
Let A354790(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A354790(n); a(1)=0 by convention.
+10
1
0, 1, 10, 100, 1000, 10000, 11, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 1100, 10001, 100000000000, 100010, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000, 100000000000000000, 1000000000000000000, 10000000000000000000
OFFSET
0,3
COMMENTS
The terms of A354790 are squarefree, so here the exponents e_i are 0 or 1.
This bears the same relation to A354790 as A355893 does to A090252.
LINKS
EXAMPLE
The terms, right-justified, for comparison with A355892 and A355893, are:
1 ...................................0
2 ...................................1
3 ..................................10
4 .................................100
5 ................................1000
6 ...............................10000
7 ..................................11
8 ..............................100000
9 .............................1000000
10 ............................10000000
11 ...........................100000000
12 ..........................1000000000
13 .........................10000000000
14 ................................1100
15 ...............................10001
16 ........................100000000000
17 ..............................100010
18 .......................1000000000000
19 ......................10000000000000
20 .....................100000000000000
21 ....................1000000000000000
22 ...................10000000000000000
23 ..................100000000000000000
24 .................1000000000000000000
...
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 25 2022
STATUS
approved

Search completed in 0.006 seconds