OFFSET
0
COMMENTS
LINKS
Alois P. Heinz, Rows n = 0..4000, flattened
FORMULA
EXAMPLE
T(62,3) = 2 is the first term > 1 and counts partitions [49,9,4] and [36,25,1].
Triangle T(n,k) begins:
1;
0, 1;
0;
0;
0, 1;
0, 0, 1;
0;
0;
0;
0, 1;
0, 0, 1;
0;
0;
0, 0, 1;
0, 0, 0, 1;
...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i^2>n, 0, expand(b(n-i^2, i-1)*x))))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..max(0, degree(p))))(b(n, isqrt(n))):
seq(T(n), n=0..45);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
b[n, i - 1] + If[i^2 > n, 0, Expand[b[n - i^2, i - 1]*x]]]];
T[n_] := CoefficientList[b[n, Floor@Sqrt[n]], x] /. {} -> {0};
T /@ Range[0, 45] // Flatten (* Jean-François Alcover, Feb 15 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
Alois P. Heinz, Feb 03 2021
STATUS
approved