Displaying 1-10 of 12 results found.
Decimal expansion of Product_{primes p == 1 (mod 5)} p^2/(p^2-1).
+10
15
1, 0, 1, 0, 9, 1, 5, 1, 6, 0, 6, 0, 1, 0, 1, 9, 5, 2, 2, 6, 0, 4, 9, 5, 6, 5, 8, 4, 2, 8, 9, 5, 1, 4, 9, 2, 0, 9, 8, 4, 5, 3, 8, 6, 2, 7, 5, 8, 1, 7, 3, 8, 5, 2, 3, 7, 3, 2, 0, 2, 4, 2, 0, 0, 8, 9, 2, 5, 1, 6, 1, 3, 7, 4, 2, 4, 5, 6, 7, 2, 6, 3, 7, 0, 9, 3, 9, 6, 1, 9, 7, 6, 9, 4, 5, 5, 8, 9, 2, 1, 8
COMMENTS
This constant is called Euler product 2==1 modulo 5 (see Mathar's Definition 5 formula (38)) or equivalently zeta 2==1 modulo 5.
EXAMPLE
1.01091516060101952260495658428951492...
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[5, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021, took 20 minutes *)
Decimal expansion of Product_{primes p == 4 (mod 5)} p^2/(p^2-1).
+10
15
1, 0, 0, 4, 9, 6, 0, 3, 2, 3, 9, 2, 2, 2, 9, 7, 5, 5, 8, 9, 9, 3, 7, 4, 9, 6, 2, 4, 8, 1, 0, 2, 5, 2, 1, 8, 4, 7, 9, 5, 5, 1, 0, 2, 9, 4, 1, 8, 8, 0, 2, 2, 8, 8, 0, 1, 9, 9, 5, 2, 8, 3, 7, 8, 5, 2, 1, 5, 0, 7, 1, 2, 7, 7, 0, 0, 7, 0, 0, 7, 6, 9, 8, 8, 5, 4, 3, 2, 4, 9, 1, 3, 6, 1, 1, 8, 0, 0, 6, 1, 9
FORMULA
Equals (1/C(5,4))*Pi*sqrt(3*C(5,1)*C(5,2)*C(5,3)/(5*C(5,4)*log(2+sqrt(5)))).
for definitions of Mertens constants C(5,n) see A. Languasco and A. Zaccagnini 2010.
for high precision numerical values C(5,n) see A. Languasco and A. Zaccagnini 2007.
C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C(5,3)=0.8059510404482678640573768602784309320812881149390108979348...
C(5,4)=1.29936454791497798816084001496426590950257497040832966201678...
Equals (1/C(5,4)^2)*Pi*sqrt(3*exp(-gamma)/(4*log(2 + sqrt(5)))), where gamma is the Euler-Mascheroni constant A001620.
EXAMPLE
1.0049603239222975589937496248102521847955102941880228801995283785215071277...
MATHEMATICA
(* Using Vaclav Kotesovec's function Z from A301430. *)
$MaxExtraPrecision = 1000; digits = 121;
digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
digitize[Z[5, 4, 2]]
CROSSREFS
Cf. A004618, A175646, A175647, A248930, A248938, A301429, A333240, A334826, A335963, A340576, A340577, A340578, A340628, A340628, A340004.
Decimal expansion of Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1).
+10
15
1, 0, 0, 9, 9, 3, 5, 9, 3, 4, 8, 2, 9, 4, 0, 1, 0, 2, 7, 3, 4, 9, 0, 3, 8, 4, 8, 8, 2, 4, 1, 7, 7, 8, 1, 6, 7, 7, 1, 5, 8, 5, 8, 5, 4, 7, 5, 4, 8, 8, 0, 1, 0, 1, 3, 0, 5, 8, 1, 9, 3, 2, 7, 9, 5, 1, 1, 8, 5, 9, 2, 6, 4, 5, 3, 1, 8, 0, 1, 2, 4, 5, 8, 9, 3, 6, 3, 1, 2, 2, 6, 0, 2, 5, 8, 9, 9, 2, 9, 9, 8, 8, 6, 4, 7, 8, 1, 5, 5, 6, 2, 6, 2, 1, 3, 2, 2, 5, 4, 6, 2
FORMULA
Equals 6*sqrt(13)*Pi^2/(195*g) where g = sqrt(Cl2(2*Pi/5)^2 + Cl2(4*Pi/5)^2) = 1.0841621352693895..., and Cl2 is the Clausen function of order 2. Formula by Pascal Sebah (personal communication). - Artur Jasinski, Jan 20 2021
EXAMPLE
1.009935934829401027349038488241778167715858547548801013...
MAPLE
evalf(Re(2*Pi^2/(5*sqrt(13*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5, 4, 4]/Z[5, 4, 2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *)
digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]];
cl[x_] :=I(PolyLog[2, (-1)^x] - PolyLog[2, -(-1)^(1-x)]);
A340628 :=(4 Pi^2)/(5 Sqrt[13])/ Sqrt[cl[2/5]^2 + cl[4/5]^2];
CROSSREFS
Cf. A175646, A175647, A248930, A248938, A301429, A333240, A334826, A335963, A340576, A340577, A340578, A340629.
Decimal expansion of Product_{primes p == 5 (mod 6)} 1/(1-1/p^2).
+10
13
1, 0, 6, 0, 5, 4, 8, 2, 9, 3, 1, 6, 9, 1, 1, 0, 7, 2, 8, 1, 7, 4, 1, 2, 6, 3, 6, 4, 3, 0, 9, 8, 7, 2, 0, 3, 4, 9, 3, 0, 7, 7, 1, 3, 0, 2, 0, 4, 4, 8, 7, 1, 6, 3, 1, 2, 7, 9, 9, 4, 3, 7, 2, 1, 8, 1, 7, 9, 4, 6, 0, 8, 0, 2, 4, 4, 0, 6, 6, 3, 7, 4, 5, 9, 0, 3, 1, 6, 1, 4, 3, 8, 7, 6, 8, 5, 6, 3, 3, 5, 6, 5, 0, 1, 5
COMMENTS
The four similar sequences for products of primes mod 6 are these:
A175646 for primes p == 1 (mod 6)} 1/(1-1/p^2),
A340576 for primes p == 5 (mod 6)} 1/(1-1/p^2),
A340577 for primes p == 1 (mod 6)} 1/(1+1/p^2),
A340578 for primes p == 5 (mod 6)} 1/(1+1/p^2).
FORMULA
g = A143298 = (9 - PolyGamma(1, 2/3) + PolyGamma(1, 4/3))/(4 sqrt(3));
Equals (3*sqrt(3)*h^2)/2.
EXAMPLE
1.06054829316911072817412636430987203493077130204487163127994372...
MAPLE
a := n -> 3^(2^(-n-2))*((1-3^(-2^(n+1)))/2)^(2^(-n-1)):
b := n -> Zeta(n)/Im(polylog(n, (-1)^(2/3))):
c := n -> a(n)*b(2^(n+1))^(1/2^(n+1)):
Digits := 107: evalf((3/4)*mul(c(n), n=0..9)); # Peter Luschny, Jan 14 2021
MATHEMATICA
digits = 105;
precision = digits + 10;
prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision] &;
Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
RealDigits[pB, 10, digits][[1]] (* Most of this code is due to Artur Jasinski *)
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[6, 5, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
Decimal expansion of Product_{primes p == 5 (mod 6)} 1/(1+1/p^2).
+10
12
9, 4, 4, 5, 0, 0, 9, 3, 4, 5, 0, 4, 7, 0, 0, 9, 8, 6, 7, 3, 4, 2, 9, 1, 0, 9, 4, 1, 9, 1, 4, 4, 4, 3, 4, 2, 5, 4, 6, 1, 1, 0, 7, 8, 0, 8, 6, 9, 0, 6, 6, 7, 6, 9, 5, 5, 7, 3, 5, 7, 7, 1, 1, 1, 8, 3, 8, 2, 6, 4, 5, 1, 9, 9, 3, 3, 5, 7, 4, 6, 3, 9, 5, 6, 7, 7, 5, 3, 9, 6, 1, 7, 0, 5, 2, 9, 9, 4, 5, 3, 5, 8, 6, 7, 8
EXAMPLE
0.94450093450470098673429109419144434254611078086906676955735771...
MATHEMATICA
digits = 105;
precision = digits + 5;
prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
pD = (45*pB*Lv[2])/(4*Pi^2);
RealDigits[pD, 10, digits][[1]] (* Most of this code is due to Artur Jasinski *)
(* -------------------------------------------------------------------------- *)
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[6, 5, 4]/Z[6, 5, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
Decimal expansion of Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1).
+10
12
1, 0, 2, 1, 8, 7, 8, 0, 6, 0, 4, 1, 8, 7, 5, 6, 6, 7, 5, 7, 4, 4, 4, 4, 8, 9, 1, 4, 6, 0, 0, 2, 7, 0, 8, 2, 6, 1, 7, 0, 4, 6, 0, 7, 3, 7, 7, 3, 2, 5, 1, 6, 4, 0, 6, 6, 6, 0, 1, 1, 9, 4, 4, 3, 7, 7, 0, 9, 0, 4, 7, 6, 7, 0, 5, 6, 6, 0, 0, 8, 6, 0, 6, 4, 5, 5, 1, 4, 9, 9, 9, 5, 0, 0, 5, 9, 8, 4, 1, 4, 9, 9, 9, 0, 6, 2, 3, 7, 6, 0, 1, 0, 5, 2, 3, 3, 3, 2, 0, 3, 5
FORMULA
Equals 15*sqrt(65)*g/(13*Pi^2) where g = sqrt(Cl2(2*Pi/5)^2 + Cl2(4*Pi/5)^2) = 1.0841621352693895..., and Cl2 is the Clausen function of order 2. Formula by Pascal Sebah (personal communication). - Artur Jasinski, Jan 20 2021
EXAMPLE
1.0218780604187566757444489146002708261704607377325...
MAPLE
evalf(Re(15*sqrt((1/13)*(5*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))/Pi^2), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah.
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5, 1, 4]/Z[5, 1, 2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *)
digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]];
cl[x_] := I (PolyLog[2, (-1)^x] - PolyLog[2, -(-1)^(1 - x)]);
A340629 := (15 Sqrt[65]/(26 Pi^2)) Sqrt[cl[2/5]^2 + cl[4/5]^2];
CROSSREFS
Cf. A175646, A175647, A248930, A248938, A301429, A333240, A334826, A335963, A340576, A340577, A340578, A340628.
Decimal expansion of Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1).
+10
11
1, 2, 7, 3, 9, 8, 6, 6, 1, 3, 2, 0, 6, 8, 3, 3, 9, 2, 5, 1, 5, 8, 1, 6, 8, 3, 8, 2, 1, 3, 8, 9, 4, 7, 2, 7, 3, 4, 7, 6, 2, 7, 4, 4, 4, 6, 7, 6, 7, 3, 5, 7, 8, 9, 4, 0, 0, 2, 9, 6, 8, 1, 4, 4, 0, 9, 8, 7, 4, 8, 6, 6, 8, 1, 5, 3, 7, 7, 6, 0, 6, 9, 5, 5, 6, 2, 0, 1, 2, 2, 8, 5, 4, 3, 8, 1, 1, 4, 6, 6, 0, 7, 3, 0, 5, 9, 2, 7, 4, 0, 5, 9, 2, 2, 4, 4, 6, 8, 1, 3
FORMULA
D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = A340710.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = this constant.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
EXAMPLE
1.273986613206833925158...
MATHEMATICA
(* Using Vaclav Kotesovec's function Z from A301430. *)
$MaxExtraPrecision = 1000; digits = 121;
digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
digitize[1/(Z[5, 3, 4]/Z[5, 3, 2]^2)]
CROSSREFS
Cf. A175646, A175647, A248930, A248938, A301429, A333240, A334826, A335963, A340576, A340577, A340578, A340628, A340629, A340004, A340127, A340710.
Decimal expansion of Product_{primes p == 3 (mod 5)} p^2/(p^2-1).
+10
8
1, 1, 3, 5, 7, 6, 4, 8, 7, 8, 6, 6, 8, 9, 2, 1, 6, 2, 6, 8, 6, 8, 6, 4, 3, 0, 0, 9, 4, 7, 2, 0, 8, 2, 2, 8, 9, 5, 1, 1, 9, 3, 6, 4, 1, 3, 0, 0, 5, 4, 6, 8, 7, 4, 4, 1, 6, 4, 9, 9, 7, 4, 3, 0, 1, 6, 3, 4, 0, 6, 4, 3, 1, 6, 7, 2, 0, 0, 2, 9, 6, 6, 0, 9, 9, 0, 0, 6, 8, 4, 6, 0, 3, 7, 1, 9, 8, 3, 9, 6, 8, 5, 1, 9
EXAMPLE
1.135764878668921626868643009472082289511936413...
MATHEMATICA
(* Using Vaclav Kotesovec's function Z from A301430. *)
$MaxExtraPrecision = 100; digits = 50; (* Adjust as needed. *)
digitize[c_] := RealDigits[Chop[N[c, digits+10]], 10, digits][[1]];
digitize[Z[5, 3, 2]]
CROSSREFS
Cf. A004617, A175646, A175647, A248930, A248938, A301429, A333240, A334826, A335963, A340576, A340577, A340578, A340628, A340628, A340004, A340127.
Decimal expansion of Product_{primes p == 2 (mod 5)} p^2/(p^2-1).
+10
8
1, 3, 6, 8, 5, 7, 2, 0, 5, 3, 8, 7, 6, 6, 4, 9, 0, 8, 5, 8, 6, 0, 7, 6, 3, 8, 9, 0, 4, 8, 3, 1, 0, 9, 9, 9, 0, 1, 7, 0, 2, 0, 7, 8, 2, 8, 8, 8, 5, 8, 9, 5, 2, 0, 5, 0, 0, 8, 5, 0, 4, 0, 2, 9, 5, 5, 6, 3, 3, 1, 1, 8, 8, 8, 1, 0, 5, 4, 2, 1, 2, 0, 9, 2, 1, 5, 6, 7, 7, 4, 9, 6, 0, 8, 0, 9, 7, 3, 8, 1, 1, 9, 4, 4, 2, 9, 3, 2, 4, 3, 5, 1, 5, 4, 0, 9, 3, 2, 2, 6
FORMULA
I = Product_{primes p == 0 (mod 5)} p^2/(p^2-1) = 25/24.
J = Product_{primes p == 1 (mod 5)} p^2/(p^2-1) = A340004.
K = Product_{primes p == 2 (mod 5)} p^2/(p^2-1) = this constant.
L = Product_{primes p == 3 (mod 5)} p^2/(p^2-1) = A340665.
M = Product_{primes p == 4 (mod 5)} p^2/(p^2-1) = A340127.
I*J*K*L*M = Pi^2/6 = zeta(2).
J*K*L*M = 4*Pi^2/25.
M = (Pi/2)*C(5,4)^(-2)*exp(-gamma/2)*sqrt(3/log(2+sqrt(5))), where gamma is the Euler-Mascheroni constant A001620 and C(5,4) is the Mertens constant = 1.29936454791497798816084...
EXAMPLE
1.36857205387664908586076389048310999017020782888589520500850402955633118881...
MATHEMATICA
(* Using Vaclav Kotesovec's function Z from A301430. *)
$MaxExtraPrecision = 1000; digits = 121;
digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
digitize[Z[5, 2, 2]]
CROSSREFS
Cf. A004616, A175646, A175647, A248930, A248938, A301429, A333240, A334826, A335963, A340127, A340576, A340577, A340578, A340628, A340629, A340665, A340710, A340711.
Decimal expansion of Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1).
+10
6
1, 7, 5, 5, 1, 7, 3, 8, 4, 1, 1, 6, 8, 7, 3, 7, 7, 7, 6, 6, 0, 7, 4, 7, 2, 1, 2, 2, 8, 4, 0, 5, 2, 3, 7, 0, 1, 1, 1, 5, 1, 1, 8, 1, 3, 9, 4, 5, 5, 4, 3, 9, 9, 1, 5, 5, 8, 1, 7, 9, 0, 6, 2, 1, 6, 1, 7, 5, 6, 8, 6, 2, 1, 6, 4, 6, 4, 5, 1, 1, 9, 2, 7, 5, 9, 7, 9, 9, 0, 2, 4, 8, 5, 2, 5, 6, 3, 9, 7, 6, 9, 6, 3, 6, 8, 9, 5, 1, 6, 8, 2, 5, 3, 0, 2, 5, 1, 5, 1, 1
FORMULA
D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = this constant.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = A340711.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
Formulas by Pascal Sebah, Jan 20 2021: (Start)
Let g = sqrt(Cl2(2*Pi/5)^2+Cl2(4*Pi/5)^2) = 1.0841621352693895..., where Cl2 is the Clausen function of order 2.
E = 15*sqrt(65)*g/(13*Pi^2).
H = 6*sqrt(13)*Pi^2/(195*g). (End)
EXAMPLE
1.7551738411687377766074721228405237...
MATHEMATICA
(* Using Vaclav Kotesovec's function Z from A301430. *)
$MaxExtraPrecision = 1000; digits = 121;
digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
digitize[1/(Z[5, 2, 4]/Z[5, 2, 2]^2)]
CROSSREFS
Cf. A175646, A175647, A248930, A248938, A301429, A333240, A334826, A335963, A340576, A340577, A340578, A340628, A340629, A340004, A340127, A340711.
Search completed in 0.013 seconds
|