[go: up one dir, main page]

login
Search: a340577 -id:a340577
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of Product_{primes p == 1 (mod 5)} p^2/(p^2-1).
+10
15
1, 0, 1, 0, 9, 1, 5, 1, 6, 0, 6, 0, 1, 0, 1, 9, 5, 2, 2, 6, 0, 4, 9, 5, 6, 5, 8, 4, 2, 8, 9, 5, 1, 4, 9, 2, 0, 9, 8, 4, 5, 3, 8, 6, 2, 7, 5, 8, 1, 7, 3, 8, 5, 2, 3, 7, 3, 2, 0, 2, 4, 2, 0, 0, 8, 9, 2, 5, 1, 6, 1, 3, 7, 4, 2, 4, 5, 6, 7, 2, 6, 3, 7, 0, 9, 3, 9, 6, 1, 9, 7, 6, 9, 4, 5, 5, 8, 9, 2, 1, 8
OFFSET
1,5
COMMENTS
This constant is called Euler product 2==1 modulo 5 (see Mathar's Definition 5 formula (38)) or equivalently zeta 2==1 modulo 5.
LINKS
Salma Ettahri, Olivier Ramaré, and Léon Surel, Fast multi-precision computation of some Euler products, arXiv:1908.06808 [math.NT], 2019 p.20 (100 digits precision data).
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2014-2015, Section 3.3. zeta_{5,1}(2).
FORMULA
Equals Sum_{k>=1} 1/A004615(k)^2. - Amiram Eldar, Jan 24 2021
Equals exp(-gamma/2)*Pi/(A340839^2*sqrt(5*log((1 + sqrt (5))/2))). - Artur Jasinski, Jan 30 2021
EXAMPLE
1.01091516060101952260495658428951492...
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[5, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021, took 20 minutes *)
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 15 2021
STATUS
approved
Decimal expansion of Product_{primes p == 4 (mod 5)} p^2/(p^2-1).
+10
15
1, 0, 0, 4, 9, 6, 0, 3, 2, 3, 9, 2, 2, 2, 9, 7, 5, 5, 8, 9, 9, 3, 7, 4, 9, 6, 2, 4, 8, 1, 0, 2, 5, 2, 1, 8, 4, 7, 9, 5, 5, 1, 0, 2, 9, 4, 1, 8, 8, 0, 2, 2, 8, 8, 0, 1, 9, 9, 5, 2, 8, 3, 7, 8, 5, 2, 1, 5, 0, 7, 1, 2, 7, 7, 0, 0, 7, 0, 0, 7, 6, 9, 8, 8, 5, 4, 3, 2, 4, 9, 1, 3, 6, 1, 1, 8, 0, 0, 6, 1, 9
OFFSET
1,4
LINKS
Steven Finch and Pascal Sebah, Residue of a Mod 5 Euler Product, arXiv:0912.3677 [math.NT], 2009 (C(5,n) = mu(n,5) formulas p.2).
Alessandro Languasco and Alessandro Zaccagnini, Computation of the Mertens constants mod q; 3 <= q <= 100, (2007) (GP-PARI procedure 100 digits accuracy).
Alessandro Languasco and Alessandro Zaccagnini, On the constant in the Mertens product for arithmetic progressions. I. Identities, Funct. Approx. Comment. Math. Volume 42, Number 1 (2010), 17-27.
For other links see A340711.
FORMULA
Equals (1/C(5,4))*Pi*sqrt(3*C(5,1)*C(5,2)*C(5,3)/(5*C(5,4)*log(2+sqrt(5)))).
for definitions of Mertens constants C(5,n) see A. Languasco and A. Zaccagnini 2010.
for high precision numerical values C(5,n) see A. Languasco and A. Zaccagnini 2007.
C(5,1)=1.225238438539084580057609774749220527540595509391649938767...
C(5,2)=0.546975845411263480238301287430814037751996324100819295153...
C(5,3)=0.8059510404482678640573768602784309320812881149390108979348...
C(5,4)=1.29936454791497798816084001496426590950257497040832966201678...
Equals (1/C(5,4)^2)*Pi*sqrt(3*exp(-gamma)/(4*log(2 + sqrt(5)))), where gamma is the Euler-Mascheroni constant A001620.
Equals Sum_{k>=1} 1/A004618(k)^2. - Amiram Eldar, Jan 24 2021
EXAMPLE
1.0049603239222975589937496248102521847955102941880228801995283785215071277...
MATHEMATICA
(* Using Vaclav Kotesovec's function Z from A301430. *)
$MaxExtraPrecision = 1000; digits = 121;
digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
digitize[Z[5, 4, 2]]
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 15 2021
STATUS
approved
Decimal expansion of Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1).
+10
15
1, 0, 0, 9, 9, 3, 5, 9, 3, 4, 8, 2, 9, 4, 0, 1, 0, 2, 7, 3, 4, 9, 0, 3, 8, 4, 8, 8, 2, 4, 1, 7, 7, 8, 1, 6, 7, 7, 1, 5, 8, 5, 8, 5, 4, 7, 5, 4, 8, 8, 0, 1, 0, 1, 3, 0, 5, 8, 1, 9, 3, 2, 7, 9, 5, 1, 1, 8, 5, 9, 2, 6, 4, 5, 3, 1, 8, 0, 1, 2, 4, 5, 8, 9, 3, 6, 3, 1, 2, 2, 6, 0, 2, 5, 8, 9, 9, 2, 9, 9, 8, 8, 6, 4, 7, 8, 1, 5, 5, 6, 2, 6, 2, 1, 3, 2, 2, 5, 4, 6, 2
OFFSET
1,4
LINKS
Salma Ettahri, Olivier Ramaré, and Léon Surel, Fast multi-precision computation of some Euler products, arXiv:1908.06808 [math.NT], 2019 p.20 (70 digits precision data).
Steven Finch, Greg Martin, and Pascal Sebah, Roots of unity and nullity modulo n, Proc. Amer. Math. Soc. Volume 138, Number 8, August 2010, pp. 2729-2743.
Steven Finch and Pascal Sebah, Residue of a Mod 5 Euler Product, arXiv:0912.3677 [math.NT], 2009 (formulas).
Alessandro Languasco and Alessandro Zaccagnini, On the constant in the Mertens product for arithmetic progressions. I. Identities, Funct. Approx. Comment. Math. Volume 42, Number 1 (2010), 17-27, (preliminary version).
Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
FORMULA
Equals 6*sqrt(5)/(13*A340629).
Equals 6*sqrt(13)*Pi^2/(195*g) where g = sqrt(Cl2(2*Pi/5)^2 + Cl2(4*Pi/5)^2) = 1.0841621352693895..., and Cl2 is the Clausen function of order 2. Formula by Pascal Sebah (personal communication). - Artur Jasinski, Jan 20 2021
Equals A340127^2/A340809. - R. J. Mathar, Jan 22 2021
Equals Sum_{q in A004618} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
EXAMPLE
1.009935934829401027349038488241778167715858547548801013...
MAPLE
evalf(Re(2*Pi^2/(5*sqrt(13*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5, 4, 4]/Z[5, 4, 2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *)
digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]];
cl[x_] :=I(PolyLog[2, (-1)^x] - PolyLog[2, -(-1)^(1-x)]);
A340628 :=(4 Pi^2)/(5 Sqrt[13])/ Sqrt[cl[2/5]^2 + cl[4/5]^2];
digitize[A340628] (* Peter Luschny, Jan 23 2021 *)
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 13 2021
EXTENSIONS
Corrected and more terms from Vaclav Kotesovec, Jan 15 2021
STATUS
approved
Decimal expansion of Product_{primes p == 5 (mod 6)} 1/(1-1/p^2).
+10
13
1, 0, 6, 0, 5, 4, 8, 2, 9, 3, 1, 6, 9, 1, 1, 0, 7, 2, 8, 1, 7, 4, 1, 2, 6, 3, 6, 4, 3, 0, 9, 8, 7, 2, 0, 3, 4, 9, 3, 0, 7, 7, 1, 3, 0, 2, 0, 4, 4, 8, 7, 1, 6, 3, 1, 2, 7, 9, 9, 4, 3, 7, 2, 1, 8, 1, 7, 9, 4, 6, 0, 8, 0, 2, 4, 4, 0, 6, 6, 3, 7, 4, 5, 9, 0, 3, 1, 6, 1, 4, 3, 8, 7, 6, 8, 5, 6, 3, 3, 5, 6, 5, 0, 1, 5
OFFSET
1,3
COMMENTS
The four similar sequences for products of primes mod 6 are these:
A175646 for primes p == 1 (mod 6)} 1/(1-1/p^2),
A340576 for primes p == 5 (mod 6)} 1/(1-1/p^2),
A340577 for primes p == 1 (mod 6)} 1/(1+1/p^2),
A340578 for primes p == 5 (mod 6)} 1/(1+1/p^2).
LINKS
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, Zeta_{6,5}(2) in section 3.2.
FORMULA
g = A143298 = (9 - PolyGamma(1, 2/3) + PolyGamma(1, 4/3))/(4 sqrt(3));
h = A301429;
Equals (3*sqrt(3)*h^2)/2.
Equals (3/4)*A333240.
A340577 = Pi^4/(243*g*h^2);
A340578 = (45*g*h^2)/(2*Pi^2).
Equals Pi^2/(9*A175646). - Artur Jasinski, Jan 11 2021
Equals Sum_{k>=1} 1/A259548(k)^2. - Amiram Eldar, Jan 24 2021
EXAMPLE
1.06054829316911072817412636430987203493077130204487163127994372...
MAPLE
a := n -> 3^(2^(-n-2))*((1-3^(-2^(n+1)))/2)^(2^(-n-1)):
b := n -> Zeta(n)/Im(polylog(n, (-1)^(2/3))):
c := n -> a(n)*b(2^(n+1))^(1/2^(n+1)):
Digits := 107: evalf((3/4)*mul(c(n), n=0..9)); # Peter Luschny, Jan 14 2021
MATHEMATICA
digits = 105;
precision = digits + 10;
prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision] &;
Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
RealDigits[pB, 10, digits][[1]] (* Most of this code is due to Artur Jasinski *)
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[6, 5, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
Decimal expansion of Product_{primes p == 5 (mod 6)} 1/(1+1/p^2).
+10
12
9, 4, 4, 5, 0, 0, 9, 3, 4, 5, 0, 4, 7, 0, 0, 9, 8, 6, 7, 3, 4, 2, 9, 1, 0, 9, 4, 1, 9, 1, 4, 4, 4, 3, 4, 2, 5, 4, 6, 1, 1, 0, 7, 8, 0, 8, 6, 9, 0, 6, 6, 7, 6, 9, 5, 5, 7, 3, 5, 7, 7, 1, 1, 1, 8, 3, 8, 2, 6, 4, 5, 1, 9, 9, 3, 3, 5, 7, 4, 6, 3, 9, 5, 6, 7, 7, 5, 3, 9, 6, 1, 7, 0, 5, 2, 9, 9, 4, 5, 3, 5, 8, 6, 7, 8
OFFSET
0,1
EXAMPLE
0.94450093450470098673429109419144434254611078086906676955735771...
MATHEMATICA
digits = 105;
precision = digits + 5;
prodeuler[p_, a_, b_, expr_] := Product[If[a <= p <= b, expr, 1], {p, Prime[Range[PrimePi[a], PrimePi[b]]]}];
Lv3[s_] := prodeuler[p, 1, 2^(precision/s), 1/(1 - KroneckerSymbol[-3, p]*p^-s)] // N[#, precision]&;
Lv4[s_] := 2*Im[PolyLog[s, Exp[2*I*Pi/3]]]/Sqrt[3];
Lv[s_] := If[s >= 10000, Lv3[s], Lv4[s]];
gv[s_] := (1 - 3^(-s))*Zeta[s]/Lv[s];
pB = (3/4)*Product[gv[2^n*2]^(2^-(n+1)), {n, 0, 11}] // N[#, precision]&;
pD = (45*pB*Lv[2])/(4*Pi^2);
RealDigits[pD, 10, digits][[1]] (* Most of this code is due to Artur Jasinski *)
(* -------------------------------------------------------------------------- *)
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z[6, 5, 4]/Z[6, 5, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
Decimal expansion of Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1).
+10
12
1, 0, 2, 1, 8, 7, 8, 0, 6, 0, 4, 1, 8, 7, 5, 6, 6, 7, 5, 7, 4, 4, 4, 4, 8, 9, 1, 4, 6, 0, 0, 2, 7, 0, 8, 2, 6, 1, 7, 0, 4, 6, 0, 7, 3, 7, 7, 3, 2, 5, 1, 6, 4, 0, 6, 6, 6, 0, 1, 1, 9, 4, 4, 3, 7, 7, 0, 9, 0, 4, 7, 6, 7, 0, 5, 6, 6, 0, 0, 8, 6, 0, 6, 4, 5, 5, 1, 4, 9, 9, 9, 5, 0, 0, 5, 9, 8, 4, 1, 4, 9, 9, 9, 0, 6, 2, 3, 7, 6, 0, 1, 0, 5, 2, 3, 3, 3, 2, 0, 3, 5
OFFSET
1,3
LINKS
Salma Ettahri, Olivier Ramaré, and Léon Surel, Fast multi-precision computation of some Euler products, arXiv:1908.06808 [math.NT], 2019, p. 20 (70-digit-precision data).
Steven Finch, Greg Martin, and Pascal Sebah, Roots of unity and nullity modulo n, Proc. Amer. Math. Soc. Volume 138, Number 8, August 2010, pp. 2729-2743.
Steven Finch and Pascal Sebah, Residue of a Mod 5 Euler Product, arXiv:0912.3677 [math.NT], 2009 (formulas).
Alessandro Languasco and Alessandro Zaccagnini, On the constant in the Mertens product for arithmetic progressions. I. Identities, Funct. Approx. Comment. Math. Volume 42, Number 1 (2010), 17-27, (preliminary version).
Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
FORMULA
Equals 6*sqrt(5)/(13*A340628).
Equals A340004^2/A340808. - R. J. Mathar, Jan 15 2021
Equals 15*sqrt(65)*g/(13*Pi^2) where g = sqrt(Cl2(2*Pi/5)^2 + Cl2(4*Pi/5)^2) = 1.0841621352693895..., and Cl2 is the Clausen function of order 2. Formula by Pascal Sebah (personal communication). - Artur Jasinski, Jan 20 2021
Equals Sum_{q in A004615} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
EXAMPLE
1.0218780604187566757444489146002708261704607377325...
MAPLE
evalf(Re(15*sqrt((1/13)*(5*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))/Pi^2), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah.
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5, 1, 4]/Z[5, 1, 2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *)
digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]];
cl[x_] := I (PolyLog[2, (-1)^x] - PolyLog[2, -(-1)^(1 - x)]);
A340629 := (15 Sqrt[65]/(26 Pi^2)) Sqrt[cl[2/5]^2 + cl[4/5]^2];
digitize[A340629] (* Peter Luschny, Jan 23 2021 *)
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 13 2021
EXTENSIONS
Corrected and more terms from Vaclav Kotesovec, Jan 15 2021
STATUS
approved
Decimal expansion of Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1).
+10
11
1, 2, 7, 3, 9, 8, 6, 6, 1, 3, 2, 0, 6, 8, 3, 3, 9, 2, 5, 1, 5, 8, 1, 6, 8, 3, 8, 2, 1, 3, 8, 9, 4, 7, 2, 7, 3, 4, 7, 6, 2, 7, 4, 4, 4, 6, 7, 6, 7, 3, 5, 7, 8, 9, 4, 0, 0, 2, 9, 6, 8, 1, 4, 4, 0, 9, 8, 7, 4, 8, 6, 6, 8, 1, 5, 3, 7, 7, 6, 0, 6, 9, 5, 5, 6, 2, 0, 1, 2, 2, 8, 5, 4, 3, 8, 1, 1, 4, 6, 6, 0, 7, 3, 0, 5, 9, 2, 7, 4, 0, 5, 9, 2, 2, 4, 4, 6, 8, 1, 3
OFFSET
1,2
LINKS
Salma Ettahri, Olivier Ramaré, and Léon Surel, Fast multi-precision computation of some Euler product, arXiv:1908.06808 [math.NT], 2019, p. 20.
Steven Finch, Quartic and Octic Characters Modulo n, arXiv:1008.2547 [math.NT], 2007-2010 p. 11 (formula on kappa(5) and kappa(-5)).
Steven Finch, Greg Martin and Pascal Sebah, Roots of unity and nullity modulo n, Proc. Amer. Math. Soc. Volume 138, Number 8, August 2010, pp. 2729-2743.
Steven Finch and Pascal Sebah, Residue of a Mod 5 Euler Product, arXiv:0912.3677 [math.NT], 2009 (formulas).
Alessandro Languasco and Alessandro Zaccagnini, A note on Mertens' formula for arithmetic progressions, Journal of Number Theory Volume 127, Issue 1, (2007), 37-46.
Alessandro Languasco and Alessandro Zaccagnini, On the constant in the Mertens product for arithmetic progressions. II: Numerical values, Math. Comp. 78 (2009), 315-326.
Alessandro Languasco and Alessandro Zaccagnini, On the constant in the Mertens product for arithmetic progressions. I. Identities, Funct. Approx. Comment. Math. Volume 42, Number 1 (2010), 17-27.
Alessandro Languasco and Alessandro Zaccagnini, Computation of the Mertens constants - more than 100 correct digits, (2007), 1-134 (digital data).
Alessandro Languasco and Alessandro Zaccagnini, Computation of the Mertens constants mod q; 3 <= q <= 100, (2007) (GP-PARI procedure 100 digits accuracy).
Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
Doug S. Phillips and Peter Zvengrowski, Convergence of Dirichlet Series and Euler Products, Contributions Section of Natural Mathematical and Biotechnical Sciences 38(2):153 (2017).
FORMULA
D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = A340710.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = this constant.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
Equals Sum_{q in A004617} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
EXAMPLE
1.273986613206833925158...
MATHEMATICA
(* Using Vaclav Kotesovec's function Z from A301430. *)
$MaxExtraPrecision = 1000; digits = 121;
digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
digitize[1/(Z[5, 3, 4]/Z[5, 3, 2]^2)]
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 16 2021
STATUS
approved
Decimal expansion of Product_{primes p == 3 (mod 5)} p^2/(p^2-1).
+10
8
1, 1, 3, 5, 7, 6, 4, 8, 7, 8, 6, 6, 8, 9, 2, 1, 6, 2, 6, 8, 6, 8, 6, 4, 3, 0, 0, 9, 4, 7, 2, 0, 8, 2, 2, 8, 9, 5, 1, 1, 9, 3, 6, 4, 1, 3, 0, 0, 5, 4, 6, 8, 7, 4, 4, 1, 6, 4, 9, 9, 7, 4, 3, 0, 1, 6, 3, 4, 0, 6, 4, 3, 1, 6, 7, 2, 0, 0, 2, 9, 6, 6, 0, 9, 9, 0, 0, 6, 8, 4, 6, 0, 3, 7, 1, 9, 8, 3, 9, 6, 8, 5, 1, 9
OFFSET
1,3
LINKS
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions..., arXiv:1008.2547 Zeta_{m=5,n=3}(s=2).
For links see A340628.
FORMULA
Equals Sum_{k>=1} 1/A004617(k)^2. - Amiram Eldar, Jan 24 2021
EXAMPLE
1.135764878668921626868643009472082289511936413...
MATHEMATICA
(* Using Vaclav Kotesovec's function Z from A301430. *)
$MaxExtraPrecision = 100; digits = 50; (* Adjust as needed. *)
digitize[c_] := RealDigits[Chop[N[c, digits+10]], 10, digits][[1]];
digitize[Z[5, 3, 2]]
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 15 2021
STATUS
approved
Decimal expansion of Product_{primes p == 2 (mod 5)} p^2/(p^2-1).
+10
8
1, 3, 6, 8, 5, 7, 2, 0, 5, 3, 8, 7, 6, 6, 4, 9, 0, 8, 5, 8, 6, 0, 7, 6, 3, 8, 9, 0, 4, 8, 3, 1, 0, 9, 9, 9, 0, 1, 7, 0, 2, 0, 7, 8, 2, 8, 8, 8, 5, 8, 9, 5, 2, 0, 5, 0, 0, 8, 5, 0, 4, 0, 2, 9, 5, 5, 6, 3, 3, 1, 1, 8, 8, 8, 1, 0, 5, 4, 2, 1, 2, 0, 9, 2, 1, 5, 6, 7, 7, 4, 9, 6, 0, 8, 0, 9, 7, 3, 8, 1, 1, 9, 4, 4, 2, 9, 3, 2, 4, 3, 5, 1, 5, 4, 0, 9, 3, 2, 2, 6
OFFSET
1,2
LINKS
For links see A340711.
FORMULA
I = Product_{primes p == 0 (mod 5)} p^2/(p^2-1) = 25/24.
J = Product_{primes p == 1 (mod 5)} p^2/(p^2-1) = A340004.
K = Product_{primes p == 2 (mod 5)} p^2/(p^2-1) = this constant.
L = Product_{primes p == 3 (mod 5)} p^2/(p^2-1) = A340665.
M = Product_{primes p == 4 (mod 5)} p^2/(p^2-1) = A340127.
I*J*K*L*M = Pi^2/6 = zeta(2).
J*K*L*M = 4*Pi^2/25.
M = (Pi/2)*C(5,4)^(-2)*exp(-gamma/2)*sqrt(3/log(2+sqrt(5))), where gamma is the Euler-Mascheroni constant A001620 and C(5,4) is the Mertens constant = 1.29936454791497798816084...
Equals Sum_{k>=1} 1/A004616(k)^2. - Amiram Eldar, Jan 24 2021
EXAMPLE
1.36857205387664908586076389048310999017020782888589520500850402955633118881...
MATHEMATICA
(* Using Vaclav Kotesovec's function Z from A301430. *)
$MaxExtraPrecision = 1000; digits = 121;
digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
digitize[Z[5, 2, 2]]
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 21 2021
STATUS
approved
Decimal expansion of Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1).
+10
6
1, 7, 5, 5, 1, 7, 3, 8, 4, 1, 1, 6, 8, 7, 3, 7, 7, 7, 6, 6, 0, 7, 4, 7, 2, 1, 2, 2, 8, 4, 0, 5, 2, 3, 7, 0, 1, 1, 1, 5, 1, 1, 8, 1, 3, 9, 4, 5, 5, 4, 3, 9, 9, 1, 5, 5, 8, 1, 7, 9, 0, 6, 2, 1, 6, 1, 7, 5, 6, 8, 6, 2, 1, 6, 4, 6, 4, 5, 1, 1, 9, 2, 7, 5, 9, 7, 9, 9, 0, 2, 4, 8, 5, 2, 5, 6, 3, 9, 7, 6, 9, 6, 3, 6, 8, 9, 5, 1, 6, 8, 2, 5, 3, 0, 2, 5, 1, 5, 1, 1
OFFSET
1,2
LINKS
For links see A340711.
FORMULA
D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = this constant.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = A340711.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
Formulas by Pascal Sebah, Jan 20 2021: (Start)
Let g = sqrt(Cl2(2*Pi/5)^2+Cl2(4*Pi/5)^2) = 1.0841621352693895..., where Cl2 is the Clausen function of order 2.
E = 15*sqrt(65)*g/(13*Pi^2).
H = 6*sqrt(13)*Pi^2/(195*g). (End)
Equals Sum_{q in A004616} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
EXAMPLE
1.7551738411687377766074721228405237...
MATHEMATICA
(* Using Vaclav Kotesovec's function Z from A301430. *)
$MaxExtraPrecision = 1000; digits = 121;
digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
digitize[1/(Z[5, 2, 4]/Z[5, 2, 2]^2)]
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 16 2021
STATUS
approved

Search completed in 0.013 seconds