[go: up one dir, main page]

login
Search: a348054 -id:a348054
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of positive integers with n digits that are the product of two integers ending with 7.
+10
4
0, 1, 20, 255, 3064, 34743, 380939, 4089499, 43282317, 453472867, 4715695283, 48760330737, 501941505404, 5148657883067, 52659616820819
OFFSET
1,3
COMMENTS
a(n) is the number of n-digit numbers in A348054.
FORMULA
a(n) < A052268(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.
PROG
(Python)
def a(n):
lo, hi = 10**(n-1), 10**n
return len(set(a*b for a in range(7, hi//7+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Sep 26 2021
CROSSREFS
Cf. A346509 (ending with 1), A346629 (ending with 2), A346952 (ending with 3), A347255 (ending with 4), A337855 (ending with 5), A337856 (ending with 6), A348549 (ending with 8).
KEYWORD
nonn,base,hard,more
AUTHOR
Stefano Spezia, Sep 26 2021
EXTENSIONS
a(9)-a(11) from Michael S. Branicky, Sep 26 2021
a(12)-a(15) from Martin Ehrenstein, Oct 25 2021
STATUS
approved
Number of positive integers with n digits that are equal both to the product of two integers ending with 3 and to that of two integers ending with 7.
+10
2
0, 0, 8, 129, 1771, 21802, 252793, 2826973, 30872783
OFFSET
1,3
COMMENTS
a(n) is the number of n-digit numbers in A348544.
FORMULA
a(n) < A052268(n).
a(n) = A346952(n) + A348055(n) - A348547(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.
MATHEMATICA
Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Intersection[Union@Flatten@Table[a*b, {a, 3, Floor[hi/3], 10}, {b, a, Floor[hi/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[hi/7], 10}, {b, a, Floor[hi/a], 10}]], lo<#<hi&], {n, 8}]
PROG
(Python)
def a(n):
lo, hi = 10**(n-1), 10**n
return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) & set(a*b for a in range(7, hi//7+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Oct 22 2021
KEYWORD
nonn,base,hard,more
AUTHOR
Stefano Spezia, Oct 22 2021
EXTENSIONS
a(9) from Michael S. Branicky, Oct 22 2021
STATUS
approved
Number of positive integers with n digits and final digit 9 that are equal to the product of two integers ending with the same digit.
+10
2
1, 4, 49, 524, 5596, 58706, 608886, 6267854, 64180304, 654605898, 6656849267, 67539297095, 683989985496, 6916722312963, 69859080168037
OFFSET
1,2
COMMENTS
a(n) is the number of n-digit numbers in A348545.
FORMULA
a(n) < A052268(n).
a(n) = A346952(n) + A348055(n) - A348546(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.
MATHEMATICA
Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Union[Union@Flatten@Table[a*b, {a, 3, Floor[hi/3], 10}, {b, a, Floor[hi/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[hi/7], 10}, {b, a, Floor[hi/a], 10}]], lo<#<hi&], {n, 8}]
PROG
(Python)
def a(n):
lo, hi = 10**(n-1), 10**n
return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) | set(a*b for a in range(7, hi//7+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Oct 22 2021
KEYWORD
nonn,base,hard,more
AUTHOR
Stefano Spezia, Oct 22 2021
EXTENSIONS
a(9) from Michael S. Branicky, Oct 22 2021
a(10)-a(15) from Martin Ehrenstein, Nov 06 2021
STATUS
approved
Positive integers that are equal both to the product of two integers ending with 3 and to that of two integers ending with 7.
+10
1
189, 399, 459, 609, 729, 819, 969, 999, 1029, 1239, 1269, 1449, 1479, 1539, 1659, 1729, 1809, 1869, 1989, 2079, 2109, 2289, 2349, 2499, 2619, 2639, 2679, 2709, 2889, 2919, 3009, 3059, 3129, 3159, 3219, 3249, 3339, 3429, 3519, 3549, 3699, 3759, 3819, 3969, 4029
OFFSET
1,1
COMMENTS
Intersection of A346950 and A348054.
FORMULA
Lim_{n->infinity} a(n)/a(n-1) = 1.
EXAMPLE
189 = 7*27 = 3*63, 399 = 3*133 = 7*57, 459 = 3*153 = 17*27, 609 = 3*203 = 7*87, ...
MATHEMATICA
max=4050; Select[Intersection[Union@Flatten@Table[a*b, {a, 3, Floor[max/3], 10}, {b, a, Floor[max/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[max/7], 10}, {b, a, Floor[max/a], 10}]], 0<#<max&]
PROG
(PARI) isok(m) = my(ok3=0, ok7=0); fordiv(m, d, if (((d % 10) == 3) && ((m/d % 10) == 3), ok3++); if (((d % 10) == 7) && ((m/d % 10) == 7), ok7++); if (ok3 && ok7, return(1))); \\ Michel Marcus, Oct 22 2021
(Python)
def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)) & set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
print(aupto(4029)) # Michael S. Branicky, Oct 22 2021
CROSSREFS
Cf. A017377 (supersequence), A346950, A348054, A348546.
KEYWORD
nonn,base
AUTHOR
Stefano Spezia, Oct 22 2021
STATUS
approved
Positive integers with final digit 9 that are equal to the product of two integers ending with the same digit.
+10
1
9, 39, 49, 69, 99, 119, 129, 159, 169, 189, 219, 249, 259, 279, 289, 299, 309, 329, 339, 369, 399, 429, 459, 469, 489, 519, 529, 539, 549, 559, 579, 609, 629, 639, 669, 679, 689, 699, 729, 749, 759, 789, 799, 819, 849, 879, 889, 909, 939, 949, 959, 969, 989, 999
OFFSET
1,1
COMMENTS
Union of A346950 and A348054.
FORMULA
Lim_{n->infinity} a(n)/a(n-1) = 1.
EXAMPLE
9 = 3*3, 39 = 3*13, 49 = 7*7, 69 = 3*23, 99 = 3*33, 119 = 7*17, 129 = 3*43, 159 = 3*53, 169 = 13*13, 189 = 3*63 = 7*27, ...
MATHEMATICA
a={}; For[n=0, n<=100, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3 && 10*n+9>Max[a] || Mod[10*n+9, 10*k+7]==0 && Mod[(10*n+9)/(10*k+7), 10]==7 && 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
PROG
(PARI) isok(m) = ((m%10) == 9) && sumdiv(m, d, (d % 10) == (m/d % 10)); \\ Michel Marcus, Oct 22 2021
(Python)
def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)) | set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
print(aupto(999)) # Michael S. Branicky, Oct 22 2021
CROSSREFS
Cf. A017377 (supersequence), A346950, A348054, A348547.
KEYWORD
nonn,base
AUTHOR
Stefano Spezia, Oct 22 2021
STATUS
approved
Positive integers that are the product of two integers ending with 8.
+10
1
64, 144, 224, 304, 324, 384, 464, 504, 544, 624, 684, 704, 784, 864, 944, 1024, 1044, 1064, 1104, 1184, 1224, 1264, 1344, 1404, 1424, 1444, 1504, 1584, 1624, 1664, 1744, 1764, 1824, 1904, 1944, 1984, 2064, 2124, 2144, 2184, 2204, 2224, 2304, 2384, 2464, 2484, 2544
OFFSET
1,1
FORMULA
Lim_{n->infinity} a(n)/a(n-1) = 1.
EXAMPLE
64 = 8*8, 144 = 8*18, 224 = 8*28, 304 = 8*38, 324 = 18*18, 384 = 8*48, ...
MATHEMATICA
a={}; For[n=0, n<=260, n++, For[k=0, k<=n, k++, If[Mod[10*n+4, 10*k+8]==0 && Mod[(10*n+4)/(10*k+8), 10]==8 && 10*n+4>Max[a], AppendTo[a, 10*n+4]]]]; a
PROG
(Python)
def aupto(lim): return sorted(set(a*b for a in range(8, lim//8+1, 10) for b in range(a, lim//a+1, 10)))
print(aupto(2550)) # Michael S. Branicky, Oct 22 2021
CROSSREFS
Cf. A017317 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347253 (ending with 4), A348054 (ending with 7), A348549.
KEYWORD
nonn,base
AUTHOR
Stefano Spezia, Oct 22 2021
STATUS
approved

Search completed in 0.007 seconds